Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klimawandel: Mehr CO2 in der Atmosphäre kommt Mais und Sorghum bei Trockenheit zugute

17.04.2013
Thünen-Institut simuliert unterschiedliche Klimaverhältnisse im Freiland

In einem groß angelegten Freilandexperiment haben Wissenschaftler des Thünen-Instituts für Biodiversität in Braunschweig untersucht, wie sich eine erhöhte Konzentration an Kohlendioxid (CO2) in der Atmosphäre, die im Zuge des Klimawandels erwartet wird, auf das Wachstum von Mais und Sorghum-Hirse auswirkt.


Versuchsanordnung aus Freiland-CO2-Anreicherung (FACE), gekoppelt mit Regenausschluss-Zelten. Mit dieser Anordnung untersuchen die Forscher in Braunschweig, wie sich die Kombination einer erhöhten CO2-Konzentration (innerhalb der grau unterlegten Ringfläche mit ca. 20 m Durchmesser) und simulierter Trockenheit (nach Aufziehen einer Folie während Regenereignissen über die obere Ringhälfte) auf vier verschiedene Varianten von Sorghum-Hirse und auf Mais auswirkt. Foto: Thünen-Institut

Dabei interessierte die Forscher besonders das Wechselspiel zwischen zwei erwarteten Szenarien: dem Anstieg der CO2-Konzentration und einer verstärkten Sommertrockenheit. Aus Grundlagenuntersuchungen ist bekannt, dass Pflanzen wie Mais und Hirse, die zum so genannten C4-Stoffwechseltyp gehören, empfindlich auf Wasserknappheit reagieren. Gleichzeitig aber sollten sie bei höheren CO2-Verhältnissen ihre Wasserabgabe an die Atmosphäre vermindern. Doch Ergebnisse aus dem Labor lassen sich nicht immer auf reale Freilandverhältnisse übertragen. Also überprüften die Thünen-Forscher die Reaktion der Pflanzen direkt im Feld, indem sie Teile von Äckern während der gesamten Vegetationsperiode einer erhöhten CO2-Konzentration aussetzten und gleichzeitig mit Regenausschluss-Zelten Trockenheit simulierten (Free Air Carbon Dioxide Enrichment, FACE, s. Abbildung).

Konkret wurden der Wasserhaushalt und das Wachstumsverhalten von Mais und vier verschiedenen Sorten Sorghum-Hirse über zwei Vegetationsperioden unter heutigen (390 ppm) und zukünftigen (600 ppm) CO2-Konzentrationen untersucht. Die Forscher wiesen unter anderem nach, dass Mais wie auch Sorghum unter erhöhter CO2-Konzentration rund 25 % weniger Wasser an die Außenluft abgaben. Bei ausreichender Wasserversorgung produzierte Mais mehr Biomasse als die Sorghum-Sorten. Innerhalb der untersuchten Sorghum-Varianten traten deutliche Unterschiede in der Biomasseproduktion auf.

Wie theoretisch erwartet, hatte die Erhöhung der CO2-Konzentration bei ausreichender Wasserverfügbarkeit keinen Einfluss auf das Wachstum der untersuchten Pflanzen. Simulierte Sommertrockenheit (z.B. Absenkung der Bodenwasserreserven unter 30 % bis hin zu 10 % nutzbarer Feldkapazität) führte jedoch zu deutlichen Ertragsverlusten. Hier kam dann der CO2-Effekt zum Tragen – die Verluste waren unter den erhöhten Bedingungen weniger stark ausgeprägt: Mais mit Trockenstress bildete bei erhöhter CO2-Konzentration in der Umgebungsluft rund 18 % mehr Biomasse als entsprechender Mais bei normaler (= heutiger) CO2-Konzentration. Bei den Sorghum-Varianten gab es zwischen 5 % und 15 % Mehrertrag. Je stärker sich der Trockenheitseffekt bei heutiger CO2-Konzentration auf die Pflanzen auswirkte, umso ausgeprägter war die positive Wirkung der erhöhten CO2-Konzentration.

Nach diesen Resultaten mit aktuellen Sorten von Mais und Sorghum-Hirse profitiert Mais mehr als Sorghum vom Anstieg der CO2-Konzentration unter Sommertrockenheit.

Mais und Sorghum-Hirse wurden für die Untersuchung ausgewählt, weil sie in vielen Ländern der Erde wichtige Nahrungs- bzw. Futterpflanzen darstellen. Bei uns spielt Mais wegen seines hohen Wachstumspotenzials auch eine herausragende Rolle als Energiepflanze. Auf Grenzertragsstandorten und zur Auflockerung der Fruchtfolge wird als Alternative zu Mais zunehmend auch Sorghum-Hirse geprüft bzw. angebaut.
Ansprechpartner:
Dr. Remy Manderscheid (Tel.: 0531 596-2579,
Mail: remy.manderscheid@ti.bund.de)
Prof. Dr. Hans-Joachim Weigel (Tel.: 0531 596-2501,
Mail: hans.weigel@ti.bund.de)
Thünen-Institut für Biodiversität, Braunschweig

Dr. Michael Welling | Thünen-Institut
Weitere Informationen:
http://www.ti.bund.de
http://www.ti.bund.de/no_cache/de/startseite/startseite/das-braunschweiger-face-projekt.html

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Das Potenzial nichtheimischer Baumarten für den forstlichen Anbau in Deutschland sachlich prüfen
14.06.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie