Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genomanalysen machen Zuchterfolge vorhersehbar

08.02.2012
Ertragreichere Kulturpflanzen in nur wenigen Jahren ohne Gentechnik zu züchten, könnte bald Wirklichkeit werden. Anhand von genetischen Daten und Stoffwechselprofilen können Wissenschaftler beim Mais aussichtsreiche Elternpflanzen vorhersagen. Der neue Ansatz spart vor allem Zeit und könnte die klassische Pflanzenzüchtung revolutionieren.
Die Züchtung von besonders ertragreichen oder widerstandsfähigen Kulturpflanzen ist seit Jahrhunderten ein langwieriges Geschäft. In Kreuzungsversuchen müssen Züchter meistens hunderte ausgewählte Pflanzenlinien kombinieren, bevor sie auf vielversprechenden Nachwuchs stoßen. Auf diese Weise kann es bei manchen Pflanzenarten sogar mehrere Jahrzehnte dauern, bis eine neue Sorte entsteht.

Der heutigen Landwirtschaft rennt jedoch die Zeit davon: Klimaver-änderungen, Welthunger und der steigende Energiebedarf verlangen nach schnelleren Lösungen, um die wachsenden Weltbevölkerung zu versorgen.

Grüne Gentechnik kann nicht alle Pflanzeneigenschaften verbessern
Mit gentechnischen Methoden ist es zwar mittlerweile möglich, krankheitsresistente, nährstoffangereicherte und klimatolerantere Pflanzensorten schneller zu züchten, wie beispielsweise Bt-Mais oder den sogenannten Golden Rice. Das Erzeugen besserer Pflanzensorten durch die Veränderung einzelner Gene gelingt jedoch nicht immer.

Die Entschlüsselung vieler Pflanzengenome hat gezeigt, dass landwirtschaftlich interessante Pflanzeneigenschaften nicht immer auf einzelnen Gene liegen. Wuchshöhe, Nährstoffgehalt und Ertrag werden beispielsweise häufig durch ein Zusammenspiel vieler Genorte bestimmt. Dabei können mehrere hundert Gene, in einem komplexen Wechselspiel zueinander stehen und einen Beitrag leisten.

Maiszüchtung ist zeitaufwendig

So auch beim Mais (lat. Zea mays), einer der weltweit bedeutendsten Kulturpflanzen. Besonders in den Entwicklungsländern ist Mais ein begehrtes Nahrungsmittel. In den Industriestaaten wird er darüber hinaus als Futter für Nutztiere und Lieferant von Biokraftstoffen, wie Bioethanol und Biogas angebaut.

Hunderte von Genorten beeinflussen beim Mais, wie hoch die Pflanze wächst oder wie viele Maiskörner der Kolben trägt. Das macht eine gezielte genetische Manipulation dieser Eigenschaften durch grüne Gentechnik unmöglich. Denn mit den heutigen Technologien werden nur wenige einzelne Gene manipuliert und übertragen.

Mit klassischen Züchtungsmethoden benötigen Züchter jedoch derzeit noch ungefähr ein Jahrzehnt, um eine neue Maissorte zu entwickeln. Ein Grund dafür ist, dass man Elternpflanzen nicht ansieht, ob sie ihre guten Eigenschaften auch tatsächlich an ihre Nachkommen weitergeben werden. So können beispielsweise auch hochgeschossene Maispflanzen kleinwüchsigen Nachwuchs hervorbringen- und umgekehrt. Das Phänomen, dass nur bestimmte Elternkombinationen Nachwuchs mit den gewünschten Eigenschaften erzeugen wird wissenschaftlich auch als spezifische und allgemeine Kombinationsfähigkeit bezeichnet. Erst der Nachwuchs verrät etwas über die Qualität einer Linie und macht Maiszüchtung zu einer zeitintensiven Aufgabe.
Bei der Probenentnahme für die Stoffwechselmessungen muss es schnell gehen: Da sich der Stoffwechsel von Pflanzen ständig verändert, müssen Blattproben aller Pflanzen so schnell wie möglich schockgefroren werden. In nur 69 Minuten sammelten Studenten rund 6000 Blattproben. (Quelle: ©Christian Riedelsheimer/ Universität Hohenheim)

Wissenschaftler helfen der klassischen Pflanzenzucht auf die Sprünge
Mit modernen genetischen und mathematischen Methoden soll sich das jetzt ändern. Im Rahmen des vom BMBF geförderten Kooperationsprojektes GABI-ENERGY entwickelten Pflanzenforscher einen neuen Ansatz, um Elternpflanzen mit hohem Züchtungspotential vorherzusagen. Die Wissenschaftler analysierten die Genome von rund 300 Maislinien und durchsuchten sie nach minimalen genetischen Variationen, den sogenannten Punktmutations- oder Single Nucleotide Polymorphisms brachten sie mit den positiven Merkmalen der Nachkommen in Verbindung.

„Mit den genetischen Daten und unseren Feldbeobachtungen haben wir ein mathematisches Modell trainiert. Damit sind wir jetzt in der Lage das Zuchtpotential der Eltern anhand des Genomprofils vorherzusagen.“, erklärt Christian Riedelsheimer vom Institut für Pflanzenzüchtung der Universität Hohenheim und Erstautor der Studie die Methode.
Darüber hinaus erstellten die Wissenschaftler Stoffwechselprofile aus den Blättern der Elternpflanzen mittels Gaschromatographie und Massenspektrometrie (GC-MS). Denn Stoffwechselprodukte, wie beispielsweise Chlorophyll, Stärke und Zucker geben ebenfalls einen Hinweis darauf, ob Pflanzen starke Nachkommen zeugen.

Die Pflanzen- und Tierzucht denkt um

Genetische Muster werden bereits seit einigen Jahren in der Rinderzucht genutzt, um beispielsweise vorherzusagen, ob Bullen Leistungsstarke Milchkühe zeugen werden. „Allein aufgrund ihres genetischen Profils erzielen manche Bullen einen sehr teuren Preis.“, sagt Riedelsheimer. In den letzten Jahren habe in der Züchtungsforschung ein Paradigmenwechsel stattgefunden. „Man ist davon weggekommen, einzelnen Supergenen für komplexe Merkmale nachzujagen, sondern konzentriert sich nun auf das Zusammenspiel vieler kleiner Unterschiede im Erbgut. Diesen Ansatz möchten wir jetzt auch in der Pflanzenforschung etablieren.“, so Riedelsheimer.
Machen Genomanalysen die grüne Gentechnik überflüssig?

Die Pflanzenforscher des GABI-ENERGY-Projektes sind zuversichtlich, dass ihre neue Technik vor allem Zeit und teure Anbauflächen spart. Statt die Qualität des Nachwuchses abwarten zu müssen, können Züchter schon im Vorfeld aussichtsreiche Elternpflanzen auswählen, wenn diese noch gar nicht ausgesät oder noch kleine Jungpflanzen sind.

Darüber hinaus wird es möglich, auf Eigenschaften Einfluss zu nehmen, die durch die grüne Gentechnik nicht manipulierbar sind. „Grüne Gentechnik kann erfolgreich sein, wenn es sich beispielsweise um einzelne Krankheitsresistenz-Gene handelt. Mit grüner Gentechnik kann man derzeit jedoch noch keine Merkmale verbessern, die durch sehr viele Stellen im Erbgut bestimmt sind, wie beispielsweise der Biomasseertrag.“, beschreibt Riedelsheimer die Vorteile des neuen Ansatzes.

Ursprünglich entwickelten die Wissenschaftler die Methode an der Ackerschmalwand Arabidopsis thaliana, die ein ähnlich variables Genom besitzt. Demnach könnte die Technik auch die Züchtung vieler anderer Kulturpflanzen beschleunigen. Gelänge dies, so ließe sich die natürliche genetische Vielfalt von Pflanzengenomen für die Züchtung neuer Sorten nutzen, ohne das Erbgut zu verändern.
Originalpublikation:
C. Riedelsheimer et al. (2012) Genomic prediction of complex heterotic traits in hybrid maize. Nature Genetics: e21363. doi:10.1038/ng.1033

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de
http://www.pflanzenforschung.de/journal/aktuelles/genomanalysen-machen-zuchterfolge-vorhersehbar?page=0,1&piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE