Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fruchtbar oder resistent gegen Mehltau?

12.11.2010
Mehltau befällt Nutz- und Zierpflanzen und verursacht zusammen mit anderen Krankheitserregern bei Nahrungspflanzen riesige Ernteverluste.

Trotz jahrzehntelanger Forschung ist bislang wenig darüber bekannt, welche molekularen Komponenten es diesem Pilz ermöglichen, in die Epidermiszellen der Wirtspflanzen einzudringen und welche Mechanismen Pflanzen anfällig für Mehltau-Infektionen machen. Jetzt hat ein europäisches Forschungsteam unter der Leitung von Ueli Grossniklaus, Pflanzengenetiker an der Universität Zürich, in «Science» Erkenntnisse publiziert, die ein völlig neues Licht auf die Mehltau-Anfälligkeit bei Pflanzen wirft.

Ueli Grossniklaus, Professor für Pflanzengenetik an der Universität Zürich, befasst sich mit den molekularen Mechanismen der Reproduktion bei Pflanzen. Vor einigen Jahren identifizierte er und sein Team zwei Gene namens Nortia und Feronia, die eine zentrale Rolle bei der Kommunikation zwischen weiblichen und männlichen Zellen beim Befruchtungsprozess spielen. Bei Untersuchungen des so genannten Nortia-Gens machten die Forscher eine weitreichende Entdeckung: Die molekulare Struktur von Nortia ist derjenigen des Mlo-Gens der Gerste sehr ähnlich. Bei der Gerste ist Mlo für die Anfälligkeit für Mehltauinfektionen verantwortlich und Mlo-Mutanten sind gegen eine Vielzahl von Mehltau-Stämmen resistent. In der Züchtung von Saatgerste wird dieser einzig bekannte dauerhafte Resistenzmechanismus denn auch intensiv genutzt: Pflanzeneigene Resistenzen tragen dazu bei, Ernteausfälle zu verhindern und den Pestizideinsatz zu verringern. Gerstenpflanzen sind resistent gegen Mehltau, wenn ihnen das Mlo-Gen fehlt. Über molekulare Komponenten, die es dem Mehltau-Pilz ermöglichen in die Blattepidermiszellen einzudringen, war bislang nur wenig bekannt gewesen.

Ähnliche Kommunikationsmoleküle bei Befruchtungsprozess und Pilzbefall
Nortia und Feronia regulieren bei Blütenpflanzen das Spitzenwachstum des Pollenschlauchs bei der Penetration des weiblichen Geschlechtsapparats. Analog wie Pollenschläuche durchdringen auch Pilzhyphen pflanzliches Gewebe durch Spitzenwachstum. Bis in die Mitte des 19. Jahrhunderts wurden Pollenschläuche denn auch als pilzähnliche Krankheitserreger aufgefasst, bevor ihre wahre Rolle für den Befruchtungsprozess erkannt wurde. Die Forscher untersuchten deshalb, ob zwischen dem Spitzenwachstum von Pollenschläuchen und dem von Pilzhyphen ein Zusammenhang besteht.

«Das Nortia-Gen wird nur im Geschlechtsapparat der Pflanze exprimiert. Es kann somit nicht für die Anfälligkeit auf Mehltau verantwortlich sein», erläutert Grossniklaus die nächste Hürde in seiner grundlegenden Forschungsarbeit. Deshalb untersuchten die Forscher Feronia, die zweite Mutante, die für die Pollenschlaucherkennung wichtig ist. Im Gegensatz zu Nortia ist Feronia in allen Pflanzenteilen aktiv, also auch in der Blattepidermis. In Zusammenarbeit mit der Forschungsgruppe von Ralph Panstruga vom Max Planck Institut für Züchtungsforschung in Köln konnten die Forscher nachweisen, dass Arabidopsis thaliana-Pflanzen mit dem Wildform Feronia-Gen anfällig auf Mehltau sind. Pflanzen mit inaktiviertem Feronia-Gen dagegen sind resistent gegen Mehltau. Doch diese Resistenz ist für die Pflanze mit einem hohen Preis verbunden: Die Pflanze ist unfruchtbar. Beide Erkennungsprozesse – Steuerung des Spitzenwachstums von Pollenschläuchen und von Pilzhyphen – scheinen also auf molekularer Ebene die gleichen oder wenigstens sehr ähnliche Moleküle zu nutzen. Dazu Grossniklaus: «Das erklärt, weshalb Pflanzen im Lauf der Evolution das Gen für die Mehltauanfälligkeit nicht loswerden konnten.»

Die neuen Resultate werden von Mehltau-Forschern weltweit mit grossem Interesse aufgenommen, da die Signalwege bei der Mehltau-Infektion immer noch schlecht verstanden werden. Angesichts der stetig wachsenden Weltbevölkerung wäre es wichtig, neben Gerste weitere, dauerhaft gegen Mehltau resistente Nahrungspflanzen züchten zu können. Die enge Koppelung von Mehltau-Anfälligkeit und Fruchtbarkeit zeigt aber, wie schwierig dieser Weg sein wird.

Literatur:
Sharon A. Kessler, Hiroko Shimosato-Asano, Nana Friderike Keinath, Samuel Elias Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus, Conserved molecular components for pollen tube reception and fungal invasion, in: Science, 12. November 2010, Vol. 330. no. 6006, pp. 968 – 971, 
DOI: 10.1126/science.1195211
Kontakt:
Prof. Ueli Grossniklaus, Institut für Pflanzenbiologie, Universität Zürich
Tel. +41 44 634 82 40,
E-Mail:π grossnik@botinst.uzh.ch

Beat Müller | idw
Weitere Informationen:
http://www.uzh.ch/

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Acht europäische Länder im Kampf gegen den Asiatischen Laubholzbockkäfer
06.01.2017 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

nachricht Kleinbauern in Afrika: Clevere Milchkühlung – dank Solar auch ohne Stromanschluss
02.01.2017 | Universität Hohenheim

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen