Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Etwas mehr oder weniger Schatten gefällig?

23.08.2011
Maispflanzen reagieren mit einem ausgeklügelten genetischen Mechanismus auf veränderte Umweltbedingungen. Als eine Reaktion auf eine stärkere gegenseitige Beschattung im Feld verändern sie ihre Wuchsform. Das Sonnenlicht wird so optimal ausgenutzt.

Mais in seinen heutigen Kulturformen geht auf das Wildgras Teosinte (Zea mays ssp. Parviglumis) zurück. Dieses wächst noch heute in einigen Gebieten Mexikos. In ihrem Aussehen unterscheiden sich diese beiden Pflanzen jedoch stark.

Teosinte ist ein von der Basis heraus stark verzweigtes Süßgras (Poaceae) mit kleinen Blütenständen, deren Körner aus ihren Schalen fallen sobald sie reif sind. Auf diese Weise kann Teosinte sich selbst aussäen. Maispflanzen weisen dagegen einen hohen Haupttrieb auf und besitzen große Kolben. Die Maiskörner sitzen sehr fest an einer zentralen Spindel und haben die Fähigkeit sich selbst auszusäen verloren. Die Maispflanzen sind auf die Hilfe des Menschen für die Aussaat angewiesen.

Wissenschaftler gehen davon aus, dass sich Maispflanzen vor ca. 9.000 Jahren von ihrer Urform getrennt haben. Und sie sind sich einig, dass der Mensch an der stammesgeschichtlichen Entwicklung von der Urform zu den ersten Maispflanzen maßgeblich beteiligt war. Denn nach dem Prinzip Versuch und Irrtum haben Menschen vor 5.000 bis 10.000 Jahren die ersten Pflanzen kultiviert und damit Einfluss in deren Entwicklung genommen. Die Pflanzen wuchsen durch den menschlichen Anbau dichter nebeneinander. Den einzelnen Exemplaren stand nicht mehr genügend Sonnenlicht zur Verfügung. Auf diese veränderte Umweltsituation reagierten die Pflanzen, indem sie weniger Bestockungstriebe entwickelten. So hat sich im Laufe der Jahrtausende die Maispflanze in ihrer heutigen, wenig verzweigten Form entwickelt.

Auf molekularer Ebene war bekannt, dass die unterdrückte Triebentwicklung bei Lichtmangel sowohl hormonell als auch auf genetischer Ebene gesteuert wird. Die Knospen für die unteren Seitentriebe sind auch bei den heutigen Maissorten noch angelegt. Nur treiben diese nicht aus. Wissenschaftler fanden ein Gen welchem sie dem Namen „grassy tillers 1“ (gt1) gaben. Wie der Name sagt, spielt dieses Gen bei der Bestockung der Gräser eine zentrale Rolle.

Vergleich zweier Maispflanzen: Rechts ein unveränderter Wildtyp. Links eine Pflanze, deren gt1-Gen durch Mutation seine Funktion (Wachstum der Bestockungstriebe verhindern) verloren hat. Die Pfeile deuten auf die zahlreichen Bestockungstriebe (Quelle: Cold Spring Harbor Laboratory).

Mutiert das gt1-Gen und verliert so seine Funktion, entwickeln sich auch bei den agronomisch genutzten Maispflanzen zahlreiche Bestockungstriebe. Auch zusätzliche Kolben entwickeln sich bei diesen Pflanzen. Daraus schlossen die Forscher, dass das gt1-Gen in gesunden Maispflanzen mit der unterdrückten Triebentwicklung im Zusammenhang stehen muss. Um diese Vermutung zu bestätigen, ließen die Forscher Teosinte im Labor unter schattigen Bedingungen wachsen. Erwartungsgemäß reagierten die Pflanzen auf den Lichtmangel mit einer größeren Wuchshöhe und reduziertem Wachstum der Seitentriebe. Die Analyse des gt1-Gens zeigte eine deutlich erhöhte Expression. Weitere Versuche mit normalen und mutierten Sorghumsorten - einem Getreide, welches ebenfalls zur Familie der Süßgräser gehört - bestätigten diese Ergebnisse. Die Forscher schlossen daraus, dass die Expression von gt1 bei den Gräsern über Lichtsignale kontrolliert wird.

Von einem weiteren Gen – teosinte branched1 (tb1) – ist ebenfalls bekannt, dass es das Wachstum der unteren Seitentriebe bei Maispflanzen reguliert und vor allem bei Lichtmangel aktiv ist. Die Forscher wollten in einem zweiten Schritt wissen, ob die beiden Gene gemeinsam agieren oder ab sie getrennte Wege gehen. Sie inaktivierten jeweils eines der beiden Gene und analysierten die Expression des anderen. Es zeigte sich, dass gt1 nur aktiv ist, wenn auch das tb-1-Gen aktiv ist. Im Gegensatz dazu ist tb1 auch ohne gt1 aktiv. Gt1 ist demnach an den genetischen Mechanismen maßgeblich beteiligt, scheint jedoch von der Aktivität des bt1-Gens abhängig zu sein.

Die Ergebnisse bestätigen insgesamt, dass das gt1-Gen die Entwicklung der unteren Seitentriebe der Maispflanze in Abhängigkeit vom Lichtangebot reguliert. Das Wissen um den Einfluss des gt1-Gens für die Architektur der Pflanze kann genutzt werden, den Wuchstyp von Pflanzen gezielt zu verändern. Pflanzen, die für bestimmte Standortbedingungen besser angepasst sind, aber auch Pflanzen für unterschiedliche Nutzungskonzepte können so entwickelt werden. Geht es um den Kornertrag, wären die Pflanzen mit einem zentralen Stengel von Vorteil. Soll jedoch möglichst viel Biomasse, z.B. für die Biogaserzeugung oder als Grünfutter für die Tierhaltung, auf dem Acker erzeugt werden, könnte ein buschiger Wuchstyp von Vorteil sein.

Quelle:
Clinton J. Whipple et al. (2011). “grassy tillers1 promotes apical dominance in maize and response to shade signales in the grass”. PNAS Early Edition, 1 – 7, doi: 10.1073/pnas.1102819108

Clinton J. Whipple et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/etwas-mehr-oder-weniger-schatten-gefaellig?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Das Potenzial nichtheimischer Baumarten für den forstlichen Anbau in Deutschland sachlich prüfen
14.06.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops