Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie entstehen Geschlechtschromosomen?

21.08.2012
Bei der Klärung dieser Frage half die dreigeschlechtliche Papaya. Anders als die menschlichen X- und Y-Chromosomen sind die Geschlechtschromosomen evolutionsgeschichtlich gesehen vergleichsweise jung. Die Sequenzierung der betreffenden Chromosomenregionen gibt Einblicke, durch welche Ereignisse die Geschlechtschromosomen entstanden.

Geschlechtschromosomen, wie beim Menschen das X- und das Y-Chromosom, kommen bei Pflanzen sehr selten vor. Die meisten Pflanzen sind monözisch (einhäusig). Das bedeutet, dass sich auf einer individuellen Pflanze männliche und weibliche Blütenteile entweder in einer Blüte vereint oder räumlich getrennt voneinander befinden.


Es gibt weibliche (Blüte links), männliche (Blüte rechts) und zwittrige Papayapflanzen (Quellen: links - © H.Zell / wikipedia.de; rechts - Thierry Caro © / wikipedia.de).

Nur etwa 5 % aller bekannten Pflanzen bilden getrennte männliche und weibliche Pflanzen. Diese werden als diözisch (zweihäusig) bezeichnet. Die Papayapflanze bildet sogar drei unterschiedliche Geschlechtsformen in individuellen Pflanzen aus und ist somit triözisch (dreihäusig). Es gibt männliche, weibliche und sog. hermaphroditische (zwittrige, griechisch von Hermes und Aphrodite) Papayapflanzen. Weibliche Pflanzen besitzen die Geschlechtschromosomen XX, männliche YX und Hermaphroditen YhX. Die DNA-Sequenzen der Chromosomen Y und Yh sind zu 98,8 % gleich.

Die Geschlechtschromosomen der Papayapflanze sind zwar morphologisch nicht erkennbar, aber ein Chromosomenpaar besitzt eine verkürzte Region (male-specific region des Y-Chromosoms), in der die Rekombination unterdrückt ist. Daher spricht man bei den Geschlechtschromosomen der Papaya auch von Proto-Geschlechtschromosomen. Alle Genotypen der Papaya ohne X-Chromosom sterben in frühen Entwicklungsstadien ab, was darauf hindeutet, dass beide Y-Chromosomen (Y und Yh) offenbar ein für die pflanzliche Entwicklung wichtiges Gen verloren haben.

Früchte der Hermaphroditen am süßesten

Ursprünglich kommt die baumartige Papayapflanze aus Mittelamerika. Heutzutage wird sie in tropischen Ländern rund um den Globus angebaut. Die Papayafrüchte, die in deutschen Supermärkten verkauft werden, stammen meist von befruchteten Hermaphroditen, da deren Früchte am süßesten schmecken. Da sich mit Hermaphroditen am meisten Geld verdienen lässt, sind Landwirte vornehmlich an diesem Geschlechtstyp der Papayapflanze interessiert. Doch ohne molekulargenetische Untersuchungen sind die verschiedenen Geschlechter der Pflanzen erst mit der ersten Blüte erkennbar - und die kann bis zu zwölf Monate auf sich warten lassen. Molekulargenetische Untersuchungen sind allerdings für die meisten Bauern zu kostspielig.

Vergleich von nahen Verwandten

Die Papaya gehört zur Familie der Melonenbaumgewächse (Caricaceae) mit sechs Gattungen und 35 Arten, von denen 32 diözisch, zwei triözisch sind und eine monoözisch ist. Die Vorherrschaft der diözischen Arten lässt darauf schließen, dass diese die Urgeschlechtstypen dieser Familie sind und sich die triözischen und monoözischen Arten erst in jüngerer Zeit entwickelt haben. Die einzige monoözische Art dieser Familie trägt den Namen Vasconcellea monoica und besitzt keine Geschlechtschromosomen. Forscher nutzten diese Art nun, um die in (evolutionsgeschichtlich gesehen) neuerer Zeit entstandenen Geschlechtschromosomen der Papaya mit orthologen Autosomen zu vergleichen. Wissenschaftler konnten bereits bei mehreren Blütenpflanzen und Fischen zeigen, dass sich die Geschlechtschromosomen aus Autosomen entwickelt haben. Bisher nahm man jedoch an, dass X-Chromosomen die Struktur und die Geninhalte von den ursprünglichen Autosomen, aus denen sie sich entwickelt haben, konserviert haben.

X-Chromoson keine einfache Kopie

V. monoica und Papaya sind nah miteinander verwandt. Beide verfügen über neun Chromosomenpaare, was vermuten lässt, dass eines der autosomalen Paare in V. monoica dem Geschlechtschromosomenpaar in der Papaya entspricht. Dass das X-Chromosom der Papaya offenbar aber keine einfache Kopie eines Autosoms ist, zeigte ein direkter Vergleich der X-spezifischen Region des Papaya-X-Chromosoms mit der entsprechenden Region des orthologen Autosoms von V. monoica. Die entsprechende Region des Papaya-X-Chromosoms hatte sich vergrößert, Gene verloren und andere hinzugewonnen. Ein Gen war sogar gewandert. In ihrer kürzlich in „Proceedings of the National Academy of Sciences - PNAS“ veröffentlichten Studie beschreiben die Forscher die Unterschiede zwischen den verglichenen Chromosomenabschnitten beider Arten als “beträchtlich“.

DNA-Sequenz löst Rätsel

Wie die evolutionär betrachtet noch sehr jungen Geschlechtschromosomen der Papaya entstanden sind, untersuchte auch eine weitere Forschergruppe auf andere Art und Weise und publizierte ihre Erkenntnisse ebenfalls im Fachmagazin PNAS. Dazu sequenzierte die Gruppe zunächst die hermaphroditisch-spezifische Region des Yh-Chromosoms und dessen Entsprechung auf dem X-Chromosom. Bei der Entstehung von Geschlechtschromosomen aus Autosomen gibt es ein Schlüsselereignis: Wenn die Rekombination der geschlechtsbestimmenden Regionen auf den ursprünglich homologen Chromosomenpaaren nicht mehr stattfindet, entsteht auf jedem der Chromosomen jeweils ein Geschlechtstyp, die sog. männlichen oder weiblichen Heterogameten. Evolutionsmodelle beschreiben dabei Szenarien wie die Anhäufung repetitiver DNA-Sequenzen, chromosomale Neuanordnungen, Genbewegungen, Genverluste und die Bildung von Pseudogenen. Ob diese tatsächlich an der Evolution beteiligt sind, prüfte nun ein Forscherteam.

Für einen Vergleich von X und Y-Chromosomen muss die DNA-Sequenz dieser Regionen unbedingt vollständig bekannt sein. Warum Wissenschaftler für derartige Studien nicht einfach die menschlichen Geschlechtschromosomen, die seit geraumer Zeit sequenziert sind, heranziehen, lässt sich einfach erklären: Die Evolution von Geschlechtschromosomen läuft höchstwahrscheinlich in mehreren Phasen ab. Das Y-Chromosom der Papaya ist “erst“ vor etwa 0.5-2.2 Millionen Jahren entstanden und somit evolutionsgeschichtlich noch jung. Die Entstehung des Y-Chromosoms von Säugetieren soll schon vor etwa 166 Millionen Jahren stattgefunden haben und befindet sich nun in einem späten evolutionären Entwicklungsstadium. Das junge Y-Chromosom der Papaya hingegen sieht dem X-Chromosom der Papaya noch sehr ähnlich und eignet sich hervorragend, um ein jüngeres Stadium der Geschlechtschromosomenentwicklung zu untersuchen.

Inversionen und Transposons

In ihrer Studie konnten die Wissenschaftler zeigen, dass unter anderem Inversionen in der hermaphroditisch-spezifischen Region des Yh-Chromosoms schuld daran waren, dass keine Rekombination mit dem X-Chromosom mehr stattfinden konnte. Das war höchstwahrscheinlich der Ausgangspunkt für die Evolution der Geschlechtschromosomen, denn dadurch kam es zu zahlreichen intrachromosomalen Neuanordnungen, die wahrscheinlich mit dem Ende der Rekombination im Y-Chromosom bestehen blieben. Daran sollen nach Aussagen der Wissenschaftler auch springende DNA-Elemente, die sog. Transposons, beteiligt gewesen sein.

Das Yh-Chromosom und das X-Chromosom der Papaya unterscheiden sich vor allem in einem Punkt voneinander: Die hermaphroditisch-spezifische Region des Yh-Chromosoms hat weniger funktionelle Gene als die entsprechende Region des X-Chromosoms. Da die Wissenschaftler in ihrer Studie keine Beweise dafür fanden, dass die entsprechende Region des X-Chromosoms Gene dazu gewonnen haben könnte, vermuten sie, dass das Yh-Chromosom in diesem Bereich Gene verloren hat bzw. Gene zu Pseudogenen umgewandelt wurden. Pseudogene sind DNA-Abschnitte, die zwar wie ein Gen aufgebaut sind, jedoch nicht mehr als Vorlage für ein funktionales Protein dienen. Damit bestätigten die Forscher theoretische Vorhersagemodelle, die Genverluste, Pseudogenausbildungen und die Anhäufung von Transposons als verantwortliche Elemente für die frühen Stadien der Geschlechtschromosomenevolution verantwortlich machen.

Quellen:

Gschwend, AR. et al. (2012): Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci U S A. (6. August 2012) [In Druck].

Wang, J. et al. (2012): Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A. (6. August 2012)

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/wie-entstehen-geschlechtschromosomen?page=0,0&piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten