Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Blühhormon bestimmt den Zeitpunkt der Kartoffelernte

18.10.2011
Das Pflanzenhormon Florigen war bisher als Signalgeber der Blütenbildung bekannt. Wissenschaftler haben herausgefunden, dass der Botenstoff auch das Wachstum von Kartoffeln an jahreszeitliche Rhythmen anpasst.

Als die Kartoffel im 16. Jahrhundert mit spanischen Schiffen aus Südamerika nach Europa kam, sah die europäische Bevölkerung zunächst keinen Anlass, von den üblichen Nahrungsmitteln, wie Getreidebrei und Brot, auf die braunen Knollen zu wechseln. Die eingeführten Kartoffelsorten enthielten damals noch einen besonders hohen Anteil des Solanins, einem Gift der Nachtschattengewächse, dass Übelkeit und Kopfschmerzen verursacht. Auch der Anbau der Pflanzen gestaltete sich zunächst schwierig.

Die damaligen Kartoffelpflanzen waren in ihrem Wachstum an die kurzen Tage ihrer äquatornahen Herkunftsländer angepasst, in denen die Tageslichtdauer weniger als 14 Stunden beträgt. Diese "Kurztagskartoffeln" mit der botanischen Bezeichnung Solanum tuberosum ssp. andigena bildeten während der langen Sommertage in Europa oft meterlange Ausläufer aus, an denen erst zum Herbst viel zu kleine, grüne, solaninhaltige Knollen entstanden.

Kartoffeln wachsen nach einer inneren Uhr

Im Laufe der Evolution und durch gezielte Züchtung sind mittlerweile über 3.000 Kartoffelsorten entstanden, die in den unterschiedlichsten Klimaregionen der Welt angebaut werden. Dass die Kartoffel mittlerweile weltweit als drittwichtigstes Nahrungsmittel nach Reis und Weizen gehandelt wird, verdankt sie nicht zuletzt ihrer großen Anpassungsfähigkeit an unterschiedliche Jahresrhythmen. So warten die spätreifenden Sorten Mitteleuropas mit der Knollenbildung bis zum Herbst, wenn die Temperaturen sinken und die Tage kürzer werden. Frühkartoffeln beginnen dagegen schon in den langen Tagen des Aprils mit Blüte und Knollenbildung, weshalb sie auch als Langtagespflanzen bezeichnet werden. Eine innere Uhr scheint in den Pflanzen dafür zu sorgen, dass die unterschiedlichen Sorten optimal an die jahreszeitlichen Schwankungen der Tageslichtlänge in verschiedenen Regionen angepasst sind.

Ein Blühhormon steuert das jahreszeitliche Knollenwachstum

Wie genau das molekulare Uhrwerk des Kartoffelwachstums funktioniert, war bisher jedoch unbekannt. Auf diesem Gebiet ist Wissenschaftlern jetzt ein Durchbruch gelungen.

Sie entdeckten, dass das Wachstum von Kartoffelknollen durch die gleichen molekularen Signale gesteuert wird, die auch die jahreszeitliche Blütenbildung in Pflanzen kontrollieren. Durch diese Botenstoffe sind Pflanzen in der Lage, die Tageslänge mit ihren Blätter zu messen und die Information an die umliegenden Organe weiterzuleiten. Im Falle der Blütenbildung handelt es sich um das Hormon Florigen, das von den Blättern zu den Spitzen des Sprosses transportiert wird, um dort die Blütenbildung einzuleiten.

Dass das Signalprotein auch Kartoffelknollen wachsen lässt, erkannten die Forscher als sie das als Hd3a bezeichnete Gen, welches einen Florigen-verwandten Botenstoff der Reispflanze verschlüsselt, auf Kartoffelpflanzen der Sorte Solanum tuberosum ssp. andigena übertrugen, die normalerweise nur an kurzen Tagen Kartoffeln bilden. Aktivierten die genetisch veränderten Pflanzen das Reisgen, begannen sie auch an langen Tagen zu blühen und unterirdische Speicherknollen auszubilden. Die genetische Umwandlung von einer Kurztages- zu einer Langtageskartoffelpflanze durch das Reishormon, ließ sich sogar auf genetisch unveränderte Wildtyppflanzen übertragen, wenn die Wissenschaftler die Sprossachse der Hd3a Kartoffelpflanzen auf die Wurzeln von Wildtyppflanzen pfropften und umgekehrt.

Auch Kartoffeln produzieren Florigen

Florigen bzw. eine seiner Komponenten, FLOWERING LOCUS T (FT), wurde erstmals 2004 in der Ackerschmalwand Arabidopsis thaliana entdeckt. In Kartoffelpflanzen wusste man bislang nichts von entsprechenden Blühhormonen. In ihrer Studie stießen die Pflanzenforscher jedoch im kürzlich entschlüsselten Kartoffelgenom auf zwei Florigen-verwandte Gene, das Gen StSP6A und das Gen StSP3D. Beide sind besonders in Blättern und den unterirdischen Seitenausläufern aktiv, den sogenannten Stolonen, an deren Enden sich die Kartoffelknollen ausbilden.

StSP6A macht aus Kurztags- Langtageskartoffeln

Tatsächlich scheinen StSP6A und StSP3D wichtige Signalproteine zu produzieren, die den Zeitpunkt von Blüte und Knollenwachstum regulieren. Genau wie Hd3a aus Reis machte StSP6 aus Kurztages- Langtagespflanzen, wenn gentechnisch veränderte Pflanzen eine besonders große Menge an StSP6 produzierten. Hemmten die Forscher die Produktion von StSP6A durch die RNA-Interferenz-Methode, so verzögerte sich die Kartoffelbildung wieder.

Um zu verstehen, wie genau die Lichtsignale StSP6 regulieren, untersuchten die Wissenschaftler einen bereits bekannten Schlüsselfaktor der inneren Uhr. CONSTANS (CO) wurde in A. thaliana entdeckt und steht in direkter Wechselwirkung mit den Lichtrezeptoren der Pflanze. In Reispflanzen, die nur bei kurzen Tageslängen blühen, reichert sich der Botenstoff im Herbst in den Pflanzenblättern an und aktiviert das Florigen. Bei langen Tagen unterdrückt er die Florigen-Produktion.

Die Ergebnisse der Wissenschaftler deuten darauf hin, dass StSP6A über einen ähnlichen Schaltkreis reguliert wird. Ähnlich wie im Reis, hemmte CO die Aktivierung des StSPA-Gens nur an langen Tagen und unterdrückte somit Knollen- und Blütenbildung.

Neue Kartoffelsorten für den Kampf gegen den Welthunger

Im Laufe der Evolution scheinen sich jedoch auch Regulationsmechanismen ausgebildet zu haben, die die Blütenbildung von der Tageslänge entkoppeln. So ist die Funktion des StSP6A-Gens in einigen Tomatensorten, wie die Kartoffel ein Nachtschattengewächs, durch eine genetische Mutation gänzlich verloren gegangen.

Auch die Ergebnisse der Studie zeigen, dass nicht alle Signalmoleküle, die die Blütenbildung steuern, jahreszeitlich reguliert sind. Manipulationen des StSP3D-Gens, das ebenfalls Blütenbildung einleitet, hatten beispielsweise keinen Einfluss auf den Zeitpunkt der Knollenbildung. Zudem wird seine Aktivität unabhängig von CO nur schwach durch die Tageslänge beeinflusst.

Für die Wissenschaftler sind dies erste Hinweise darauf, dass Änderungen von Genaktivitätsmustern und Abwandlungen der molekularen Regelwerke dazu führen, dass sich Kartoffelpflanzen an unterschiedliche Klimabedingungen anpassen.

Die Kartoffel gilt derzeit als eines der wichtigsten Nahrungsmittel im Kampf gegen den Welthunger, da sie schneller wächst als jede andere Kulturpflanze, weniger Platz braucht, hohe Erträge liefert, sich hervorragend in Fruchtfolgen einpasst und noch dazu in anderen Klimazonen gedeihen kann als beispielsweise Mais, Getreide oder Reis.

Der aufgedeckte Mechanismus könnte entscheidend zur Entwicklung neuer Kartoffelsorten beitragen, um den Kartoffelanbau auf Teile der Welt auszuweiten, in denen die Kartoffel heute noch keine Anbaurolle spielt.

Quelle:
Navarro C. et al. (2011). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478: doi:10.1038/nature10431

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/ein-bluehhormon-bestimmt-den-zeitpunkt-der-kartoffelernte?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie