Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Bakterien auf der Spur – Infrarotes Licht ermöglicht Charakterisierung von Krankheitserregern

12.07.2013
Wissenschafter der Veterinärmedizinischen Universität Wien (Vetmeduni Vienna) sind dem Bakterium Staphylococcus aureus auf der Spur.

Die Forschenden der Abteilung für Funktionelle Mikrobiologie entwickelten eine Methode zur schnellen und zuverlässigen Unterscheidung von speziellen Lebensformen des Bakteriums, die es ihm ermöglichen, sich besser an den Wirt anzupassen. Die Ergebnisse wurden aktuell im Journal of Clinical Microbiology veröffentlicht.

Staphylococcus aureus (S. aureus) ist ein so genanntes gram-positives Bakterium. Es kommt in der Natur häufig vor und besiedelt die Haut und die oberen Atemwege bei Mensch und Tier. Ein gesundes Immunsystem kann die Vermehrung des Keimes in Schach halten. Ist das Immunsystem aber geschwächt, kann sich der Erreger verbreiten und zu lebensbedrohlichen entzündlichen Erkrankungen der Lunge, des Herzens und anderer Organe führen. S. aureus ist aufgrund der Produktion von hitzestabilen Toxinen auch ein häufiger Verursacher von Lebensmittelvergiftungen. Bei Milchkühen verursacht S. aureus häufig Euterentzündungen und ist deshalb sowohl für die Veterinärmedizin als auch für die Lebensmittelsicherheit von Bedeutung.

Bakterielle Mikroevolution begünstigt langwierige Krankheitsverläufe

S. aureus verfügt über ein vielseitiges Repertoire, mit dem er sich der Immunabwehr entzieht. Aggressivere Typen des Bakteriums bilden eine Kapsel aus, vermehren sich schnell, werden aber auch vom Immunsystem rasch erkannt. S. aureus ohne Kapsel kann hingegen innerhalb von Zellen überleben, wird vom Immunsystem weniger gut erkannt und wartet ab, bevor er zum Angriff übergeht. Ob ein Keim eine Kapsel besitzt oder nicht, gibt also Auskunft über den möglichen Krankheitsverlauf. Neuere Untersuchungen deuten darauf hin, dass im Zuge der Anpassung des Bakteriums an den Wirt (Mensch oder Tier) eine Art Mikroevolution stattfindet. Dieser Entwicklungsschritt führt dazu, dass keine Kapsel auf der Bakterienoberfläche gebildet wird. Die „unbekapselte“ Lebensform kann sich so der Immunabwehr des Wirts oder einer Antibiotikabehandlung erfolgreich entziehen. Diese Form wird daher häufig bei chronischen Infektionen nachgewiesen.

Infrarotes Licht unterscheidet Kapseltypen

Der Nachweis der verschiedenen Kapseln wurde bisher mit speziellen Antikörpern, die an die Kapsel binden, durchgeführt. Diese Methode ist sehr aufwändig und die benötigten Antikörper müssen zuvor im Tierversuch produziert werden. Die Studienautoren entwickelten eine Methode, mit der verschiedene Kapseltypen ohne Verwendung von Antikörpern eindeutig und rasch unterschieden werden können. Mit einer speziellen Methode, der Fourier-Transform-Infrarotspektroskopie, werden die zu untersuchenden Keime durchleuchtet. In Kombination mit künstlichen neuronalen Netzen, die zur Datenauswertung entwickelt wurden, geben die spektralen Daten Aufschluss über den Kapseltyp des Bakteriums. Studienautor Tom Grunert von der Abteilung für Funktionelle Mikrobiologie an der Vetmeduni Vienna erklärt: „Die Methode kann auch dazu beitragen, die zugrundeliegenden Anpassungsmechanismen der Bakterien besser zu verstehen, um damit zukünftige Behandlungsverfahren zu optimieren.“

Bakterien am Scheideweg

Monika Ehling-Schulz, Leiterin der Abteilung, beschreibt die Zusammenhänge: „Im Prinzip haben Krankheitskeime zwei Möglichkeiten, ihr Leben zu gestalten. Entscheiden sie sich für Angriff, so riskieren sie, ihre Wirte und damit letztlich auch sich selbst zu vernichten. Warten sie ab, so nehmen sie sich die Möglichkeit sich zu vermehren. Bakterien müssen sich also zwischen den beiden Strategien Virulenz und Persistenz entscheiden. Eine genaue Kenntnis der Mechanismen von Virulenz und Persistenz ist notwendig, um neue Therapieansätze zu finden und effektivere Therapien zu entwickeln.“

Die Publikation „Rapid and Reliable Identification of Staphylococcus aureus Capsular Serotypes by Means of Artificial Neural Network-Assisted Fourier Transform Infrared Spectroscopy“ von Tom Grunert, Mareike Wenning, Maria Sol Barbagelata, Martina Fricker, Daniel O. Sordelli, Fernanda R. Buzzola und Monika Ehling-Schulz wurde in der Juliausgabe des Journals for Clinical Microbiology veröffentlicht. Link zur Zusammenfassung: http://www.ncbi.nlm.nih.gov/pubmed/23658268

Das Forschungsprojekt wurde in Zusammenarbeit mit der Universität Buenos Aires in Argentinien und der Technischen Universität München durchgeführt. Im nächsten Schritt werden u.a. im Rahmen eines bilateralen Forschungsaustausches zwischen Argentinien und Österreich die molekularen Anpassungsmechanismen des Bakteriums an den Wirt näher untersucht.

Wissenschaftlicher Kontakt:
Univ.-Prof. Dr. Monika Ehling-Schulz
Abteilung für Funktionelle Mikrobiologie
Veterinärmedizinische Universität Wien
T +43 664 60257-6397
E Monika.Ehling-Schulz@vetmeduni.ac.at
Aussenderin:
Mag. Doris Sallaberger
Public Relations
Veterinärmedizinische Universität Wien
T +43 1 25077-1001
E Doris.Sallaberger@vetmeduni.ac.at

Doris Sallaberger | idw
Weitere Informationen:
http://www.vetmeduni.ac.at

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Neue Strategie zur Kupferreduktion im Pflanzenschutz entwickelt
21.02.2018 | Bundesanstalt für Landwirtschaft und Ernährung (BLE)

nachricht Da haben wir den Salat: Erste Ernte aus aufbereitetem Abwasser im Forschungsprojekt HypoWave
20.02.2018 | ISOE - Institut für sozial-ökologische Forschung

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics