Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Agronomische und ökologische Auswirkungen von ausgebrachten Bioabfällen

21.08.2014

Auf Wunsch der Ministerien für Landwirtschaft und Ökologie erstellten das INRA [1], das CNRS [2] und das Irstea [3] gemeinsam ein wissenschaftliches Gutachten zu den agronomischen und ökologischen Auswirkungen der Ausbringung von Düngemitteln aus biologischen Abfallprodukten (Dung, Kompost, Klärschlamm etc.). Die Ergebnisse des Gutachtens wurden am 3. Juli 2014 in Paris vorgestellt.

Gülle wird seit Jahrhunderten auf landwirtschaftlichen Flächen ausgebracht. Diese Methode der organischen Düngung hat sich jedoch weiter entwickelt und wurde im Laufe des 20. Jahrhunderts von der synthetischen Mineraldüngung verdrängt. Dadurch ist es einfacher geworden, die notwendige Menge an den wichtigsten Nährstoffen wie Stickstoff (N), Phosphor (P) und Kalium (K) zu ermitteln und einzusetzen. 

In der letzten Zeit hat die Wiederverwertung von organischem Dünger aus verschiedenen häuslichen und industriellen Abfällen (Matière fertilisantes d’origine résiduaires = Mafor) (z.B. Abwasser, Hausmüll, Industrieabfälle etc.) in der Landwirtschaft jedoch wieder zugenommen. Der agronomische Vorteil der Mafor ist, dass durch sie organische Substanzen direkt in den Boden gelangen und sie die einzige erneuerbare Phosphor-Quelle sind. 

Im Rahmen einer weiteren Studie sollen jetzt folgende Punkte untersucht werden: 

Heterogene Verteilung der Mafor-Ressourcen. In Frankreich wird ein Viertel der landwirtschaftlich genutzten Flächen mit Gülle gedüngt. Dabei kommt es auf einigen Flächen zu einer Überversorgung mit Stickstoff, wodurch ein Teil des Nährstoffs an die Atmosphäre oder an Gewässer verloren geht, was wiederum Umweltauswirkungen zur Folge hat. 

Kontrollierte Zugabe von pathogenen Mikroorganismen. Dung und städtischer Klärschlamm enthalten aufgrund ihrer fäkalen Herkunft pathogene Mikroorganismen wie Bakterien, Viren und Parasiten. Diese können zur Ausbreitung von Antibiotikaresistenzen beitragen. 

Variierende Menge chemischer Schadstoffe im Boden. Die meisten Schadstoffe (organisch oder anorganisch), die durch die Mafor in den Boden gelangen, können auch auf andere Weise zu Verunreinigungen führen, z.B. über die atmosphärische Deposition, Pflanzenschutzmittel, Bewässerung etc. Auch wenn die gegenwärtig in Frankreich ausgebrachte Menge an Mafor unter den gesetzlich festgelegten Grenzwerten bleibt, kann sie langfristig dennoch zu einer schwer kontrollierbaren Anreicherung von Schadstoffen im Boden führen.

Für eine Optimierung des Einsatzes von Mafor in der Landwirtschaft und eine Erhöhung ihres Beitrags für die Recycling-Wirtschaft braucht es umfangreiche Kenntnisse der Eigenschaften von Abfallstoffen und deren Behandlungen.

[1] INRA – französisches Institut für Agrarforschung

[2] CNRS – französisches Zentrum für wissenschaftliche Forschung

[3] Irstea – nationales Forschungsinstitut für Umwelt- und Agrarwissenschaften und –Technologien, öffentliche Forschungseinrichtung mit Schwerpunkt Landmanagement (Wasserressourcen, Landtechnik) 

Quelle: Gemeinsame Pressemitteilung des Irstea, des CNRS und des INRA – 03.07.2014 – http://www2.cnrs.fr/sites/communique/fichier/cp_esco_version_def.pdf 

Redakteur: Clément Guyot, clement.guyot@diplomatie.gouv.fr

Wissenschaft-Frankreich (Nummer 274 vom 20. August 2014)

Französische Botschaften in Deutschland und Österreich

Clément Guyot | Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Neue Strategie zur Kupferreduktion im Pflanzenschutz entwickelt
21.02.2018 | Bundesanstalt für Landwirtschaft und Ernährung (BLE)

nachricht Da haben wir den Salat: Erste Ernte aus aufbereitetem Abwasser im Forschungsprojekt HypoWave
20.02.2018 | ISOE - Institut für sozial-ökologische Forschung

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics