Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


X-ray laser takes aim at cosmic mystery

An international collaboration including researchers from Lawrence Livermore National Laboratory has refined a key process in understanding extreme plasmas such as those found in the sun, stars, at the rims of black holes and galaxy clusters.

In short, the team identified a new solution to an astrophysical phenomenon through a series of laser experiments.

A photograph of the instrument setup for an astrophysics experiment at the SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser. The experiment was conducted in the Soft X-ray hutch using this electron beam ion trap, or EBIT, built at the Max Planck Institute in Heidelberg, Germany. Photo by Jose R. Crespo Lopez-Urrutia, Max Planck Institute for Nuclear Physics

In the new research, appearing in the Dec. 13 edition of the journal Nature, scientists looked at highly charged iron using the Linac Coherent Light Source (LCLS) free-electron laser. Highly charged iron produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters, stellar cornea and the emission of the sun.

The experiment helped scientists understand why observations from orbiting X-ray telescopes do not match theoretical predictions, and paves the way for future X-ray astrophysics research using free-electron lasers such as LCLS. LCLS allows scientists to use an X-ray laser to measure atomic processes in extreme plasmas in a fully controlled way for the first time.

The highly charged iron spectrum doesn't fit into even the best astrophysical models. The intensity of the strongest iron line is generally weaker than predicted. Hence, an ongoing controversy has emerged whether this discrepancy is caused by incomplete modeling of the plasma environment or by shortcomings in the treatment of the underlying atomic physics.

"Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wave functions rather than in insufficient modeling of collision processes," said Peter Beiersdorfer, a physicist at Lawrence Livermore and one of the initiators of the project.

Greg Brown, a team member from Livermore, said: "Measurements conducted at the LCLS will be important for interpreting X-ray emissions from a plethora of sources, including black holes, binary stars, stellar coronae and supernova remnants, to name a few."

Many astrophysical objects emit X-rays, produced by highly charged particles in superhot gases or other extreme environments. To model and analyze the intense forces and conditions that cause those emissions, scientists use a combination of computer simulations and observations from space telescopes, such as NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton. But direct measurements of those conditions are hard to come by.

In the LCLS experiments, the focus was on plus-16 iron ions, a supercharged form of iron. The iron ions were created and captured using a device known as an electron beam ion trap, or EBIT. Once captured, their properties were probed and measured using the high-precision, ultra brilliant LCLS X-ray laser.

Some collaborators in the experiments have already begun working on new calculations to improve the atomic-scale astrophysical models, while others analyze data from followup experiments conducted at LCLS in April. If they succeed, LCLS may see an increase in experiments related to astrophysics.

"Almost everything we know in astrophysics comes from spectroscopy," said team member Maurice Leutenegger, of NASA's Goddard Space Flight Center, who participated in the study. Spectroscopy is used to measure and study X-rays and other energy signatures, and the LCLS results are valuable in a "wide variety of astrophysical contexts," he said.

The EBIT instrument used in the experiments was developed at the Max Planck Institute for Nuclear Physics and will be available to the entire community of scientists doing research at the LCLS. Livermore has been a pioneer in EBITs. Various EBIT devices have been operational at LLNL for more than 25 years. This was the first time that an EBIT was coupled to an X-ray laser, opening up an entirely new venue for astrophysics research, according to Beiersdorfer.

Researchers from SLAC National Accelerator Laboratory; the Max Planck Institute for Nuclear Physics in Heidelberg, Germany; NASA Goddard Space Flight Center; the Center for Free-Electron Laser Science; GSI Helmholtz Center for Heavy Ion Research; and Giessen, Bochum, Erlangen-Nuremberg and Heidelberg universities in Germany; Kavli Institute for Particle Astrophysics and Cosmology at SLAC; and TRIUMF in Canada also collaborated in the LCLS experiments.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Quanten-Schnüffelnase

Der Laser, der zugleich ein Detektor ist: An der TU Wien wurde ein mikroskopisch kleiner Sensor entwickelt, mit dem man gleichzeitig verschiedene Gase nachweisen kann.

Wir Menschen erschnüffeln unterschiedliche Gerüche und Düfte durch chemische Rezeptoren in unserer Nase. Doch für den technischen Nachweis von Gasen greift man...

Im Focus: „Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet [Science, 21. Oktober 2016].

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz...

Im Focus: Elektronik mit Licht beschleunigen

Wissenschaftler am MPQ haben mit ultrakurzen Laserpulsen die schnellsten jemals erzeugten elektrischen Ströme in Festkörpern gemessen. Die Elektronen führten in einer Sekunde achtmillionen Milliarden Schwingungen aus, ein absoluter Rekord für die Steuerung von Elektronen in Festkörpern.

Die Leistungsfähigkeit von modernen elektronischen Geräten wie Computern oder Mobilfunkgeräten wird durch die Geschwindigkeit bestimmt, mit der die...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Innovative Lösungen für multifunktionale Werkstoffe und effiziente kurze Prozessketten

IPF Dresden präsentiert sich im Science Campus der Kunststoffmesse 2016

Auf der weltgrößten Kunststoffmesse K 2016 vom 19. bis 26. Oktober 2016 in Düsseldorf präsentiert sich das Leibniz-Institut für Polymerforschung Dresden e. V....

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Experten treffen sich am 27. Oktober zum siebten „NORTH Regio Day on Infection“ in Braunschweig

20.10.2016 | Veranstaltungen

Sicherheit und Vertrauen in der vernetzten Welt

20.10.2016 | Veranstaltungen

Fachtagung „55. Heidelberger Grand Round“ mit internationalen Krebsexperten

20.10.2016 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Die Quanten-Schnüffelnase

21.10.2016 | Energie und Elektrotechnik

Sterilkonnektoren der nächsten Generation

21.10.2016 | Biowissenschaften Chemie

Neuer Mechanismus hinter der Wirkung von Hautkrebs-Medikament Imiquimod entschlüsselt

21.10.2016 | Biowissenschaften Chemie