Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dark Energy Alternatives to Einstein Are Running Out of Room

10.01.2013
Research by University of Arizona astronomy professor Rodger Thompson finds that a popular alternative to Albert Einstein’s theory for the acceleration of the expansion of the universe does not fit newly obtained data on a fundamental constant, the proton to electron mass ratio.
Thompson's findings, reported Jan. 9 at the American Astronomical Society meeting in Long Beach, Calif., impact our understanding of the universe and point to a new direction for the further study of its accelerating expansion.

To explain the acceleration of the expansion of the universe, astrophysicists have invoked dark energy – a hypothetical form of energy that permeates all of space. A popular theory of dark energy, however, does not fit new results on the value of the proton mass divided by the electron mass in the early universe.

Thompson computed the predicted change in the ratio by the dark energy theory (generally referred to as rolling scalar fields) and found it did not fit the new data.

UA alumnus Brian Schmidt, along with Saul Perlmutter and Adam Reiss, won the 2011 Nobel Prize in Physics for showing that the expansion of the universe is accelerating rather than slowing down as previously thought.

The acceleration can be explained by reinstating the "cosmological constant" into Einstein's theory of General Relativity. Einstein originally introduced the term to make the universe stand still. When it was later found that the universe was expanding, Einstein called the cosmological constant "his biggest blunder."

The constant was reinstated with a different value that produces the observed acceleration of the universe’s expansion. Physicists trying to calculate the value from known physics, however, get a number more than 10 to the power of 60 (one followed by 60 zeros) too large – a truly astronomical number.

That's when physicists turned to new theories of dark energy to explain the acceleration.

In his research, Thompson put the most popular of those theories to the test, targeting the value of a fundamental constant (not to be confused with the cosmological constant), the mass of the proton divided by the mass of the electron. A fundamental constant is a pure number with no units such as mass or length. The values of the fundamental constants determine the laws of physics. Change the number, and the laws of physics change. Change the fundamental constants by a large amount, and the universe becomes very different from what we observe.

The new physics model of dark energy that Thompson tested predicts that the fundamental constants will change by a small amount. Thompson identified a method of measuring the proton to electron mass ratio in the early universe several years ago, but it is only recently that astronomical instruments became powerful enough to measure the effect. More recently, he determined the exact amount of change that many of the new theories predict.

Last month, a group of European astronomers, using a massive radio telescope in Germany, made the most accurate measurement of the proton-to-electron mass ratio ever accomplished and found that there has been no change in the ratio to one part in 10 million at a time when the universe was about half its current age, around 7 billion years ago.

When Thompson put this new measurement into his calculations, he found that it excluded almost all of the dark energy models using the commonly expected values or parameters. If the parameter space or range of values is equated to a football field, then almost the whole field is out of bounds except for a single 2-inch by 2-inch patch at one corner of the field. In fact, most of the allowed values are not even on the field.

"In effect, the dark energy theories have been playing on the wrong field," Thompson said. "The 2-inch square does contain the area that corresponds to no change in the fundamental constants, and that is exactly where Einstein stands."

Thompson expects that physicists and astronomers studying cosmology will adapt to the new field of play, but for now, "Einstein is in the catbird seat, waiting for everyone else to catch up."

Jennifer Fitzenberger | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexibel statt starr

Gezielter und effizienter Transport zellulärer Frachten durch physikalischen Mechanismus

Damit Zellen richtig funktionieren können, müssen Frachten innerhalb der Zelle ständig von einem Ort zum anderen transportiert werden, wobei es ähnlich zugeht...

Im Focus: Elektronen am Tempolimit

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so...

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungen

IT-Sicherheit – Wettlauf gegen die Zeit

26.08.2016 | Veranstaltungen

Neue Ideen für die Schifffahrt

24.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geothermieforschung: Bund fördert Projekt am Drilling Simulator Celle mit 3,8 Millionen Euro

26.08.2016 | Förderungen Preise

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungsnachrichten

Körperwärme als Stromquelle

26.08.2016 | Materialwissenschaften