Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Curiosity Shakes, Bakes, and Tastes Mars with SAM

NASA's Curiosity rover analyzed its first solid sample of Mars in Nov. with a variety of instruments, including the Sample Analysis at Mars (SAM) instrument suite.

Developed at NASA's Goddard Space Flight Center in Greenbelt, Md., SAM is a portable chemistry lab tucked inside the Curiosity rover. SAM examines the chemistry of samples it ingests, checking particularly for chemistry relevant to whether an environment can support or could have supported life.

This artist's concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life. Credit: NASA/JPL-Caltech

The sample of Martian soil came from the patch of windblown material called "Rocknest," which had provided a sample previously for mineralogical analysis by Curiosity's Chemistry and Mineralogy (CheMin) instrument. CheMin also received a new sample from the same Rocknest scoop that fed SAM. SAM has previously analyzed samples of the Martian atmosphere.

SAM can get a solid sample of Mars from either a drill or a scoop attached to the end of Curiosity's robotic arm. Since Rocknest is essentially a pile of loose soil, the scoop was used this time.

"This is the first time we've analyzed a solid sample using all three instruments that comprise SAM," said Paul Mahaffy, SAM Principal Investigator at NASA Goddard. "We also cleaned Curiosity's sample manipulation system and successfully tested our ability to move the sample from the manipulation system through the instrument suite."

A complex choreography was required to get the sample inside SAM for analysis, according to Mahaffy. First, since the scoop might still have had contamination from Earth, the first three scoops were shaken, run through a sieve, then dumped right back on the surface with the idea that they would carry away any contaminants with them. A sieved portion of the fourth scoop – just a few thousandths of a gram – was then delivered to SAM. A cover that protects SAM from accidentally ingesting windblown material was opened, and Curiosity's arm positioned the sample over SAM's inlet funnels. Before the sample was dropped, SAM turned on its inlet funnel vibrators, which move the sample into a tiny quartz cup. After the sample dropped, the vibrator was turned off, the cover was closed, and the cup, which is on a carousel holding 74 sample cups, was lowered and moved to one of two ovens.

After the sample was baked to release its gases, SAM's three instruments "digested" them and gave Curiosity its first "taste" of Mars. A basic three-step process will be used to analyze future samples as well:

Separate the molecules:
Gas from the sample first travels to the Gas Chromatograph (GC) instrument. The purpose of this instrument is to sort out all the different molecules in the sample, and tell how much of each kind there is. It accomplishes this by using a stream of helium gas to push the sample down a long, narrow tube (which is wound into a coil to save space). Helium is used because it is inert, meaning it won't react with and change any of the sample molecules. The inside of the tube is coated with a thin film. As molecules travel through the tube, they stick for a bit on the film, and the heavier the molecule, the longer it sticks. Thus, the lighter molecules emerge from the tube first, followed by the middleweight molecules, with the heaviest molecules bringing up the rear.

Identify the molecules:

Since molecules of different weights emerge from the tube of the gas chromatograph at different times, the GC can send groups of different weights, one at a time, to SAM's next instrument, which will determine exactly what kind of molecule makes up each of the groups. This is the Quadrupole Mass Spectrometer (QMS) instrument. It fires high-speed electrons at the molecules, breaking them up into fragments and giving the molecules and their fragments an electric charge. These molecules and their fragments with an electric charge can be moved by electric fields. The QMS uses both direct current and alternating current fields to sort the electrically charged molecules and fragments based on their weight (mass). Molecules and fragments of different mass are counted by a detector at different times to generate a mass spectrum, which is a pattern that uniquely identifies molecules.

Identify the volatiles and determine the isotopes:

After the QMS identifies the molecules, the sample is directed into the Tunable Laser Spectrometer (TLS), which can identify and analyze certain volatile molecules, like methane and carbon dioxide. The sample enters a chamber with precisely positioned mirrors at both ends. A laser is fired through a tiny hole in one of the mirrors. As the laser light bounces between the mirrors, it illuminates the sample. Different molecules will absorb certain colors (frequencies) of light, so the TLS identifies the molecules by which colors of the laser are blocked (since the laser is tunable, it can be adjusted to shine in a range of colors).

The TLS can also identify isotopes the same way. Isotopes are versions of an element that are a little bit heavier because their nucleus contains more neutrons. For example, carbon 13 is an atom of carbon with an extra neutron, so it is a heavier version of the more common carbon 12. Occasionally, a carbon 13 will take the place of a carbon 12 in an organic molecule. This is important since life prefers to use the lighter isotopes, because chemical reactions with them require less energy. So if we measure the isotopes of carbon in a material and discover that there is more light carbon relative to heavy carbon than would be found randomly, we might guess that we are seeing the effects of life.

Finally, since volatile molecules are found in the atmosphere as well as in soil and rock, samples of the Martian air can be sent directly to the TLS without going through SAM's other instruments.

SAM was developed at NASA Goddard, but with significant elements provided by industry, university, and NASA partners. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Curiosity/Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the rover.

For more information about SAM, refer to the "SAM I am" site at:

For more information about the Curiosity rover, visit: and Nancy Neal-Jones / Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md. /
Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.

Bill Steigerwald | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Quanten-Schnüffelnase

Der Laser, der zugleich ein Detektor ist: An der TU Wien wurde ein mikroskopisch kleiner Sensor entwickelt, mit dem man gleichzeitig verschiedene Gase nachweisen kann.

Wir Menschen erschnüffeln unterschiedliche Gerüche und Düfte durch chemische Rezeptoren in unserer Nase. Doch für den technischen Nachweis von Gasen greift man...

Im Focus: „Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet [Science, 21. Oktober 2016].

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz...

Im Focus: Elektronik mit Licht beschleunigen

Wissenschaftler am MPQ haben mit ultrakurzen Laserpulsen die schnellsten jemals erzeugten elektrischen Ströme in Festkörpern gemessen. Die Elektronen führten in einer Sekunde achtmillionen Milliarden Schwingungen aus, ein absoluter Rekord für die Steuerung von Elektronen in Festkörpern.

Die Leistungsfähigkeit von modernen elektronischen Geräten wie Computern oder Mobilfunkgeräten wird durch die Geschwindigkeit bestimmt, mit der die...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Innovative Lösungen für multifunktionale Werkstoffe und effiziente kurze Prozessketten

IPF Dresden präsentiert sich im Science Campus der Kunststoffmesse 2016

Auf der weltgrößten Kunststoffmesse K 2016 vom 19. bis 26. Oktober 2016 in Düsseldorf präsentiert sich das Leibniz-Institut für Polymerforschung Dresden e. V....

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Experten treffen sich am 27. Oktober zum siebten „NORTH Regio Day on Infection“ in Braunschweig

20.10.2016 | Veranstaltungen

Sicherheit und Vertrauen in der vernetzten Welt

20.10.2016 | Veranstaltungen

Fachtagung „55. Heidelberger Grand Round“ mit internationalen Krebsexperten

20.10.2016 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Die Quanten-Schnüffelnase

21.10.2016 | Energie und Elektrotechnik

Sterilkonnektoren der nächsten Generation

21.10.2016 | Biowissenschaften Chemie

Neuer Mechanismus hinter der Wirkung von Hautkrebs-Medikament Imiquimod entschlüsselt

21.10.2016 | Biowissenschaften Chemie