Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Some cancer mutations slow tumor growth

Surprising result suggests that enhancing these mutations’ impact could offer a new way to treat cancer.

A typical cancer cell has thousands of mutations scattered throughout its genome and hundreds of mutated genes.

A scanning electron micrograph of a squamous cell carcinoma, a type of skin cancer. The cell has been frozen and split open to reveal its nucleus.
Image: Anne Weston, LRI, CRUK. Wellcome Images

However, only a handful of those genes, known as drivers, are responsible for cancerous traits such as uncontrolled growth. Cancer biologists have largely ignored the other mutations, believing they had little or no impact on cancer progression.

But a new study from MIT, Harvard University, the Broad Institute and Brigham and Women’s Hospital reveals, for the first time, that these so-called passenger mutations are not just along for the ride. When enough of them accumulate, they can slow or even halt tumor growth.

The findings, reported in this week’s Proceedings of the National Academy of Sciences, suggest that cancer should be viewed as an evolutionary process whose course is determined by a delicate balance between driver-propelled growth and the gradual buildup of passenger mutations that are damaging to cancer, says Leonid Mirny, an associate professor of physics and health sciences and technology at MIT and senior author of the paper.

Furthermore, drugs that tip the balance in favor of the passenger mutations could offer a new way to treat cancer, the researchers say, beating it with its own weapon — mutations. Although the influence of a single passenger mutation is minuscule, “collectively they can have a profound effect,” Mirny says. “If a drug can make them a little bit more deleterious, it’s still a tiny effect for each passenger, but collectively this can build up.”

Lead author of the paper is Christopher McFarland, a graduate student at Harvard. Other authors are Kirill Korolev, a Pappalardo postdoctoral fellow at MIT, Gregory Kryukov, a senior computational biologist at the Broad Institute, and Shamil Sunyaev, an associate professor at Brigham and Women’s.

Power struggle

Cancer can take years or even decades to develop, as cells gradually accumulate the necessary driver mutations. Those mutations usually stimulate oncogenes such as Ras, which promotes cell growth, or turn off tumor-suppressing genes such as p53, which normally restrains growth.

Passenger mutations that arise randomly alongside drivers were believed to be fairly benign: In natural populations, selection weeds out deleterious mutations. However, Mirny and his colleagues suspected that the evolutionary process in cancer can proceed differently, allowing mutations with only a slightly harmful effect to accumulate.

To test this theory, the researchers created a computer model that simulates cancer growth as an evolutionary process during which a cell acquires random mutations. These simulations followed millions of cells: every cell division, mutation and cell death.

They found that during the long periods between acquisition of driver mutations, many passenger mutations arose. When one of the cancerous cells gains a new driver mutation, that cell and its progeny take over the entire population, bringing along all of the original cell’s baggage of passenger mutations. “Those mutations otherwise would never spread in the population,” Mirny says. “They essentially hitchhike on the driver.”

This process repeats five to 10 times during cancer development; each time, a new wave of damaging passengers is accumulated. If enough deleterious passengers are present, their cumulative effects can slow tumor growth, the simulations found. Tumors may become dormant, or even regress, but growth can start up again if new driver mutations are acquired. This matches the cancer growth patterns often seen in human patients.

“Cancer may not be a sequence of inevitable accumulation of driver events, but may be actually a delicate balance between drivers and passengers,” Mirny says. “Spontaneous remissions or remissions triggered by drugs may actually be mediated by the load of deleterious passenger mutations.”

When they analyzed passenger mutations found in genomic data taken from cancer patients, the researchers found the same pattern predicted by their model — accumulation of large quantities of slightly deleterious mutations.

Tipping the balance

In computer simulations, the researchers tested the possibility of treating tumors by boosting the impact of deleterious mutations. In their original simulation, each deleterious passenger mutation reduced the cell’s fitness by about 0.1 percent. When that was increased to 0.3 percent, tumors shrank under the load of their own mutations.

The same effect could be achieved in real tumors with drugs that interfere with proteins known as chaperones, Mirny suggests. After proteins are synthesized, they need to be folded into the correct shape, and chaperones help with that process. In cancerous cells, chaperones help proteins fold into the correct shape even when they are mutated, helping to suppress the effects of deleterious mutations.

Several potential drugs that inhibit chaperone proteins are now in clinical trials to treat cancer, although researchers had believed that they acted by suppressing the effects of driver mutations, not by enhancing the effects of passengers.

In current studies, the researchers are comparing cancer cell lines that have identical driver mutations but a different load of passenger mutations, to see which grow faster. They are also injecting the cancer cell lines into mice to see which are likeliest to metastasize.

The research was funded by the National Institutes of Health/National Cancer Institute Physical Sciences Oncology Center at MIT.

Sarah McDonnell | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Quanten-Schnüffelnase

Der Laser, der zugleich ein Detektor ist: An der TU Wien wurde ein mikroskopisch kleiner Sensor entwickelt, mit dem man gleichzeitig verschiedene Gase nachweisen kann.

Wir Menschen erschnüffeln unterschiedliche Gerüche und Düfte durch chemische Rezeptoren in unserer Nase. Doch für den technischen Nachweis von Gasen greift man...

Im Focus: „Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet [Science, 21. Oktober 2016].

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz...

Im Focus: Elektronik mit Licht beschleunigen

Wissenschaftler am MPQ haben mit ultrakurzen Laserpulsen die schnellsten jemals erzeugten elektrischen Ströme in Festkörpern gemessen. Die Elektronen führten in einer Sekunde achtmillionen Milliarden Schwingungen aus, ein absoluter Rekord für die Steuerung von Elektronen in Festkörpern.

Die Leistungsfähigkeit von modernen elektronischen Geräten wie Computern oder Mobilfunkgeräten wird durch die Geschwindigkeit bestimmt, mit der die...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Innovative Lösungen für multifunktionale Werkstoffe und effiziente kurze Prozessketten

IPF Dresden präsentiert sich im Science Campus der Kunststoffmesse 2016

Auf der weltgrößten Kunststoffmesse K 2016 vom 19. bis 26. Oktober 2016 in Düsseldorf präsentiert sich das Leibniz-Institut für Polymerforschung Dresden e. V....

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Experten treffen sich am 27. Oktober zum siebten „NORTH Regio Day on Infection“ in Braunschweig

20.10.2016 | Veranstaltungen

Sicherheit und Vertrauen in der vernetzten Welt

20.10.2016 | Veranstaltungen

Fachtagung „55. Heidelberger Grand Round“ mit internationalen Krebsexperten

20.10.2016 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Die Quanten-Schnüffelnase

21.10.2016 | Energie und Elektrotechnik

Sterilkonnektoren der nächsten Generation

21.10.2016 | Biowissenschaften Chemie

Neuer Mechanismus hinter der Wirkung von Hautkrebs-Medikament Imiquimod entschlüsselt

21.10.2016 | Biowissenschaften Chemie