Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Large scale production of Edge-Functionalized Graphene Nanoplatelets (EFGnPs)

13.02.2013
Researchers from the Ulsan National Institute of Science and Technology (UNIST), South Korea have pioneered a simple, but efficient and eco-friendly way to produce Edge-selectively functionalized graphene nanoplatelets (EFGnPs) by dry ball milling graphite in the presence of various gases.
The electrocatalytic activity of heteroatom-doped carbon-based nanomaterials has become a growing interest in the past few years due to their potential applications for fuel cells and metal-air batteries.

Several approaches currently exist for the doping of heteroatoms into graphitic structure, but these suffer from high manufacturing costs and technical difficulties.
Researchers at Ulsan National Institute of Science and Technology (UNIST) have come up with a simple, but efficient and eco-friendly alternative which sees the production of edge-selectively functionalized graphene nanoplatelets (EFGnPs) via a dry ball milling graphite in the presence of various gases. The dry ball mill is effectively a type of grinder, traditionally use to grind ores, chemicals and other raw materials into fine powder. It can also be used on a atomic level, as is the case when producing EFGnPs.

Due to the versatility of mechanochemical reactions driven by ball milling, various functional groups could be introduced to the broken edges of graphene nanoplatelets (GnPs) in the presence of appropriate chemical vapors, liquids, or solids in the ball-mill crusher.

The mechanism of edge-selective functionalization in the ball-milling process involves the reaction between reactive carbon species generated by a mechanochemical cleavage of graphitic C-C bonds and gases in a sealed ball-mill crusher. The dormant active carbon species, which remain unreactive in the crusher, could be terminated by subsequent exposure to air moisture. As a result, some oxygenated groups, such as hydroxyl (-OH) and carboxylic acid (-COOH), can be introduced at the broken edges of the preformed EFGnPs with minimal basal plane distortion.

A scanning electron microscope (SEM) is used to demonstrate the mechanochemical cracking of a large grain sized piece of graphite into a small grain size of EFGnPs. Due to the reaction between the newly formed active carbon species at the broken edges of the GnPs and corresponding gases, the ball milling and subsequent workup procedures were found to increase the weight of all the resultant EFGnPs with respect to the graphite starting material. These results indicated that the mechanochemical functionalization of graphite was efficient. The resultant EFGnPs are active enough for the oxygen reduction reaction (ORR) in fuel cells, and hence they will make expensive platinum (Pt)-based electrocatalysts to take a back seat.

Jong-Beom Baek, professor and director of the Interdisciplinary School of Green Energy/Low-Dimensional Carbon Materials Center at UNIST commented:

“We have developed a simple, but versatile ball-milling process to efficiently exfoliate the pristine graphite directly into EFGnPs. Various microscopic and spectroscopic measurements were performed to confirm the reaction mechanisms for the edge functionalization of graphite by ball milling in the presence of corresponding gases and their superior slectrocatalytic activities of the ORR,” said Prof. Baek.

This research was funded by the Ministry of Education, Science and Technology (Minister Lee Ju-Ho) through the National Research Foundation of Korea (President Seung Jong Lee) and published in Journal of the American Chemical Society (Title: Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball-milling and their use as metal-free electrocatalysts for oxygen reduction reaction).

REFERENCE:

In-Yup Jeon, Hyun-Jung Choi, Sun-Min Jung, Jeong-Min Seo, Min-Jung Kim, Liming Dai, and Jong-Beom Baek 2013. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball-milling and their use as metal-free electrocatalysts for oxygen reduction reaction" Journal of the American Chemical Society, 135(4): 1386–1393 (direct link below)

Journal information
Journal of American Chemical Society
Funding information
the Ministry of Education, Science and Technology (Minister Lee Ju-Ho) through the National Research Foundation of Korea (President Seung Jong Lee)

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Materials Sciences:

nachricht 3-D-printed structures 'remember' their shapes
29.08.2016 | Massachusetts Institute of Technology

nachricht Crystal unclear: Why might this uncanny crystal change laser design?
29.08.2016 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Meteoriteneinschlag im Nano-Format

Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

Ein Meteorit, der in flachem Winkel auf die Erde trifft, kann gewaltige Verwüstungen anrichten: Er schrammt über die Erdoberfläche und legt oft eine lange...

Im Focus: Flexibel statt starr

Gezielter und effizienter Transport zellulärer Frachten durch physikalischen Mechanismus

Damit Zellen richtig funktionieren können, müssen Frachten innerhalb der Zelle ständig von einem Ort zum anderen transportiert werden, wobei es ähnlich zugeht...

Im Focus: Elektronen am Tempolimit

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so...

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Citizen 2016: Festival für demokratischere Technik

29.08.2016 | Veranstaltungen

Internationale Jahrestagung der Gesellschaft für Operations Research

29.08.2016 | Veranstaltungen

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Reinraum on Demand

29.08.2016 | Verfahrenstechnologie

EU-Projekt LIAA: Montagelösungen für Mensch-Roboter-Teams

29.08.2016 | Energie und Elektrotechnik

Nur schlank reicht nicht mehr

29.08.2016 | Verfahrenstechnologie