Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


An Ideal Material: Solving a Mystery Leads to the Discovery of a True Topological Insulator

An old material gets a new name, and with it, topological insulators have another chance to shine.

Samarium hexaboride (SmB6) has been around since the late 1960s--but understanding its low temperature behavior has remained a mystery until recently. Experimentalists* have recently confirmed that this material is the first true 3D topological insulator—as originally predicted by JQI/CMTC☨ theorists in 2010.

JQI E. Edwards
Experimentalists have recently confirmed that SmB6 is the first true 3D topological insulator—as originally predicted by JQI/CMTC☨ theorists in 2010.

Topological insulators have been discussed widely as a new area of material science, with the potential to study quantum Hall physics and exotic states such as Majorana fermions. While this finding provides a conclusion to one mystery, it is also the beginning of a new chapter that will certainly lead to a clearer understanding of this strange physics and even new quantum devices.

As insulators are cooled to absolute zero, their ability to insulate effectively becomes infinite. About 40 years ago, scientists observed that, under these conditions, some insulators atypically retain a tiny bit of conductivity. These materials, termed Kondo insulators, were not well-understood, until recently.

In Kondo insulators two ingredients combine to create what are called “heavy fermions.” In materials such as SmB6, some of the electrons are effectively pinned, only having a spin degree of freedom. This is in contrast to the speedy conduction electrons, which can also move in the crystal, endowing it with metallic character. The energy-momentum relationship (band structure) is flat for the pinned electrons. The conduction electrons would normally have a quadratic ("U" shaped) energy-momentum relationship, but at low temperatures, they strongly interact with the effectively stationary electrons. The band structure reorganizes to take on more of the flattened character of the stationary electrons. This hybridization gives rise to electrons that act as if they are sluggish and is the origin of the term ‘heavy fermions.’ The transition from metal to insulator, where the electrons behave, in effect, as if they are 1000 times heavier, starts to occur as the system is cooled below 50 K (see illustration). But then something strange happens a few degrees above absolute zero.

Maxim Dzero is an expert in heavy fermion materials: “Decades ago, people went through the periodic table making all sorts of combinations of elements. With this material, the major mystery in 1970s was that it was an insulator that at low temperatures, but still retained some small residual conductivity.”

The missing piece of the puzzle lay with theory that wouldn’t been developed until recent years. Above 4 K, SmB6 appears to be an insulator; looking below 4 K, it is a metal with high resistivity. This seemed confusing until recently when condensed matter theorists who study topology claim that this is exactly what you should see in a topological insulator.

A perfect topological insulator would be insulating in the bulk, but, in 3-dimensions, allow current to pass over the surface. Predicting these materials is tricky and while scientists have some hints as to the ingredients, finding them is somewhat serendipitous. Even cold atoms interacting with lasers have been proposed as a candidate for realizing this kind of physics. In recent years, researchers have studied bismuth compounds as a topological material. Unfortunately, interactions and defects tend to destroy their bulk insulating behavior, making it difficult to study the existence of conducting surface states.

In 2010**, JQI and PFC-supported scientists at the CMTC made were able to show that the mystery surrounding Kondo insulators could be explained using topological theory. It turns out that the strong interactions create a situation where the surface conducting states are truly independent and isolated from the bulk. Recently, experimental groups have verified that SmB6 is indeed a true 3D topological insulator, and in fact, is the first compound to be classified as such.

An experiment at University of Michigan involves attaching 8 electrical contacts to a thin sample in a novel way so as to unambiguously distinguish between bulk and surface conduction. Independently, a group from the University of California at Irvine has made voltage measurements, probing the Hall effect. They observe that the Hall resistance is independent of sample thickness, which is consistent with SmB6 supporting surface conduction. If the bulk was conducting, then the resistance would increase as the sample thickness was decreased.

In a related, third experiment at the University of Maryland’s Center for Nanophysics and Advanced Materials, researchers have reported careful measurements of the Kondo-insulating behavior of SmB6 at different temperatures, which supports the presence of underlying topological physics.

The surface conducting states of a topological insulator are expected to be quite impervious to disorder. Indeed, the experiments indicate this. Dzero explains, “The transport properties are quite good in spite of the crude things that are done to the sample. It is remarkable that the surface conductivity does not change.”

Victor Galitski, in response to the experimental work that is posted currently on the open-access arXiv discusses the strength of the measurements, “There is one major qualitative prediction to distinguish the topological insulator: surface conduction. This is the first material in the world that does this. There is no other conceivable theory that will explain it besides topological insulators.”

☨Affiliations [The theory work and prediction of SmB6 as a topological insulator was done primarily in Victor Galitski's group at JQI/CMTC, with support from the NSF PFC @JQI]:

Victor Galitski is a JQI fellow and a professor at the University of Maryland Physics Department/Condensed Matter Theory Center (CMTC).

Maxim Dzero was a postdoctoral researcher at JQI and is now a professor at Kent State University

Kai Sun was a postdoctoral researcher at JQI and is now a professor at the University of Michigan--Sun is an author on the previous theoretical works, as well as the current experimental results from U. Michigan

Piers Coleman is a professor at Rutgers University

**Theory papers:

Theory of topological Kondo insulators, Maxim Dzero, Kai Sun, Piers Coleman, and Victor Galitski, Physical Review B (2012)

Topological Kondo Insulators, Maxim Dzero, Kai Sun, Piers Coleman, and Victor Galitski, Physical Review Letters, (2010)

*Experimental papers:

Discovery of the First Topological Kondo Insulator: Samarium Hexaboride, Steven Wolgast, Çaðlýyan Kurdak, Kai Sun, J. W. Allen, Dae-Jeong Kim, Zachary Fisk, arXiv:1211.5104v2

Robust Surface Hall Effect and Nonlocal Transport in SmB6: Indication for an Ideal Topological Insulator, J. Botimer, D.J. Kim, S. Thomas, T. Grant, Z. Fisk and Jing Xia, arXiv:1211.6769

Hybridization, Correlation, and In-Gap States in the Kondo Insulator SmB6 Xiaohang Zhang, N. P. Butch, P. Syers, S. Ziemak, Richard L. Greene, and J. Paglione, arXiv:1211.5532

Victor Galitski | Newswise
Further information:

More articles from Materials Sciences:

nachricht New method to identify microscopic failure
18.08.2016 | Beckman Institute for Advanced Science and Technology

nachricht Enhanced electron doping on iron superconductors discovered
16.08.2016 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: Neues DFKI-Projekt SELFIE schlägt innovativen Weg in der Verifikation cyber-physischer Systeme ein

Vor der Markteinführung müssen neue Computersysteme auf ihre Korrektheit überprüft werden. Jedoch ist eine vollständige Verifikation aufgrund der Komplexität heutiger Rechner aus Zeitgründen oft nicht möglich. Im nun gestarteten Projekt SELFIE verfolgt der Forschungsbereich Cyber-Physical Systems des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) unter Leitung von Prof. Dr. Rolf Drechsler einen grundlegend neuen Ansatz, der es Systemen ermöglicht, sich nach der Produktion und Auslieferung selbst zu verifizieren. Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Vorhaben über drei Jahre mit einer Fördersumme von 1,4 Millionen Euro.

In den letzten Jahrzehnten wurden enorme Fortschritte in der Computertechnik erzielt. Ergebnis dieser Entwicklung sind eingebettete und cyber-physische...

Im Focus: „Künstliches Atom“ in Graphen-Schicht

Elektronen offenbaren ihre Quanteneigenschaften, wenn man sie in engen Bereichen gefangen hält. Ein Forschungsteam mit TU Wien-Beteiligung baut Elektronen-Gefängnisse in Graphen.

Wenn man Elektronen in einem engen Gefängnis einsperrt, dann benehmen sie sich ganz anders als im freien Raum. Ähnlich wie die Elektronen in einem Atom können...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Neue Ideen für die Schifffahrt

24.08.2016 | Veranstaltungen

E-Health, E-Hygiene, IT-Management und IT-Sicherheit: Trends und Chancen für Kliniken und Praxen

24.08.2016 | Veranstaltungen

HTW Berlin richtet im September die 30. EnviroInfo aus

23.08.2016 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Sichere Netzwerke fürs Internet der Zukunft

25.08.2016 | Informationstechnologie

Geodätisches Referenzsystem ermöglicht hochpräzise Positionsbestimmung

25.08.2016 | Geowissenschaften

Gold aus Abfall

25.08.2016 | Materialwissenschaften