Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Have Venusian volcanoes been caught in the act?

Six years of observations by ESA’s Venus Express have shown large changes in the sulphur dioxide content of the planet’s atmosphere, and one intriguing possible explanation is volcanic eruptions.

The thick atmosphere of Venus contains over a million times as much sulphur dioxide as Earth’s, where almost all of the pungent, toxic gas is generated by volcanic activity.

Is Venus volcanically active?

Most of the sulphur dioxide on Venus is hidden below the planet’s dense upper cloud deck, because the gas is readily destroyed by sunlight.

That means any sulphur dioxide detected in Venus’ upper atmosphere above the cloud deck must have been recently supplied from below.

Venus is covered in hundreds of volcanoes, but whether they remain active today is much debated, providing an important scientific goal for Venus Express.

The mission has already found clues pointing to volcanism on geologically recent timescales, within the last few hundreds of thousands to millions of years.

A previous analysis of infrared radiation from the surface pointed to lava flows atop a volcano with a composition distinct from those of their surroundings, suggesting that the volcano had erupted in the planet’s recent past.

Now, an analysis of sulphur dioxide concentration in the upper atmosphere over six years provides another clue.

Immediately after arriving at Venus in 2006, the spacecraft recorded a significant increase in the average density of sulphur dioxide in the upper atmosphere, followed by a sharp decrease to values roughly ten times lower by today.

A similar fall was also seen during NASA’s Pioneer Venus mission, which orbited the planet from 1978 to 1992.

At that time, the preferred explanation was an earlier injection of sulphur dioxide from one or more volcanoes, with Pioneer Venus arriving in time for the decline.

“If you see a sulphur dioxide increase in the upper atmosphere, you know that something has brought it up recently, because individual molecules are destroyed there by sunlight after just a couple of days,” says Dr Emmanuel Marcq of Laboratoire Atmosphères, Milieux, Observations Spatiales, France, and lead author of the paper published in Nature Geoscience.

“A volcanic eruption could act like a piston to blast sulphur dioxide up to these levels, but peculiarities in the circulation of the planet that we don’t yet fully understand could also mix the gas to reproduce the same result,” adds co-author Dr Jean-Loup Bertaux, Principal Investigator for the instrument on Venus Express that made the detections.

Venus has a ‘super-rotating’ atmosphere that whips around the planet in just four Earth-days, much faster than the 243 days the planet takes to complete one rotation about its axis.

Such rapid atmospheric circulation spreads the sulphur dioxide around, making it difficult to isolate any individual points of origin for the gas.

Dr Marcq’s team speculate that if volcanism was responsible for the initial increase, then it could come from a relatively gentle increased output of several active volcanoes rather than one dramatic eruption.

“Alternatively, and taking into account the similar trend observed by Pioneer Venus, it’s possible that we are seeing decadal-scale variability in the circulation of the atmosphere, which is turning out to be even more complex than we could ever have imagined,” he notes.

“By following clues left by trace gases in the atmosphere, we are uncovering the way Venus works, which could point us to the smoking gun of active volcanism,” adds Håkan Svedhem, ESA’s Project Scientist for Venus Express.

Markus Bauer | EurekAlert!
Further information:

Further reports about: ESA Venus Express Venusian active volcano upper atmosphere

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mikrostrukturen mit dem Laser ätzen

Mit dem Ultrakurzpulslaser lassen sich nicht nur feine Strukturen schneiden, in einem Verbundprojekt haben Wissenschaftler untersucht, wie man damit auch Mikrostrukturen in Dünnglas erzeugen kann. Anwendungen gibt es im Analytikbereich (lab-on-a-chip), aber auch in der Elektronikbranche und im Consumer-Bereich gibt es großes Interesse.

Am Anfang dieser neuen Methode stand ein überraschender Effekt: Wenn Glas mit dem Ultrakurzpulslaser in der richtigen Weise bestrahlt wird, wird es so...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Tarnkappe aus Nanostrukturen

Linsen, Objektive, Brillengläser oder auch Laser sind in der Regel mit einer Antireflexschicht versehen. Solche Schichten haben oft den Nachteil, dass sie nur innerhalb enger Wellenlängenbereiche optimal wirksam sind. Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart stellen nun eine alternative Technologie vor. Anstatt eine Beschichtung aufzubringen, bearbeiten sie die Oberfläche selbst. Im Vergleich zu herkömmlichen Verfahren können sie so den gewünschten Effekt über einen größeren Wellenlängenbereich erzielen, und das bei besonders großer Lichtdurchlässigkeit.

Der Nachtfalter macht es vor. Seine Augenoberflächen sind so beschaffen, dass sie einfallendes Licht praktisch nicht reflektieren. Keine Lichtreflexe – das...

Im Focus: Lichtinduzierte Rotationen von Atomen rufen Magnetwellen hervor

Terahertz-Anregung ausgewählter Kristallschwingungen führt zu einem effektiven Magnetfeld, das kohärente Spindynamik antreibt

Die Kontrolle funktionaler Eigenschaften durch Licht ist eines der großen Ziele moderner Festkörperphysik und der Materialwissenschaften. Eine neue Studie...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Science or Fiction? MHH-Forscher beleuchten Stammzellforschung

25.10.2016 | Veranstaltungen

BAM und Bildungswerk VDV laden zur Fachtagung „Messen im Bauwesen“ am 08.11.2016

25.10.2016 | Veranstaltungen

Internationale Forscher-Elite sucht Lösungen zur Rettung des Feldhamsters

25.10.2016 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Mikrostrukturen mit dem Laser ätzen

25.10.2016 | Verfahrenstechnologie

Wussten Sie, dass Infrarot-Wärme in der modernen Automobilproduktion unverzichtbar ist?

25.10.2016 | Energie und Elektrotechnik

Metallfreier Katalysator spaltet Wasserstoffmolekül

25.10.2016 | Biowissenschaften Chemie