Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geosciences Professor Predicts Stable Compounds of Oxygen and “Inert” Gas Xenon

13.11.2012
An international team led by Artem R. Oganov, PhD, a professor of theoretical crystallography in the Department of Geosciences and Department of Physics and Astronomy at Stony Brook University, has established stability of several oxides of normally inert xenon.

These compounds are predicted to be stable at high pressures above 830,000 atmospheres, i.e. at pressures corresponding to the Earth’s mantle and readily achievable in the laboratory. The results of their work, "Xenon oxides and silicates at high pressures,” were published November 11 in Nature Chemistry(1)

Dr. Oganov and his team used Oganov’s novel method for crystal structure prediction, which allowed them to find optimal structures and compositions of new compounds at any given pressure. In this work, they applied it to finding stable xenon oxides and silicates.

It has earlier been suggested that xenon oxides or silicates are formed in Earth’s interior, and prevent xenon from escaping into the atmosphere – thus explaining the “missing xenon paradox”, i.e. the observed order-of-magnitude depletion of xenon in the atmosphere.

“Xenon has to be stored in Earth’s mantle, otherwise we would have to admit that the existing chemical models of the Earth are deficient, probably as a result of an unknown cosmochemical process that removed xenon from the Earth,” said Oganov. “We have found that while xenon silicates cannot be stable at pressures of the Earth’s mantle, xenon oxides do become stable at these conditions.

However, these are extremely strong oxidants and cannot exist in the reducing environment of the Earth’s deep mantle. Our work, however, suggest another possibility – since strong Xe-O bonds can be formed under pressure, xenon atoms can be trapped and retained by defects and grain boundaries of mantle minerals, and our simulations give suggestions for local geometries of such trapping sites.”

In addition to solving an important geological puzzle, present results shed light on the still elusive chemistry of xenon. The very possibility of xenon, an inert gas, to form stable chemical compounds with fluorine and oxygen, was proposed theoretically by Pauling in 1932 and verified in 1962 in landmark experiments by Neil Bartlett.

However, only xenon fluorides were found to be thermodynamically stable; xenon oxides turned out to be unstable to decomposition into xenon and oxygen, with some decomposing explosively. The work of Oganov’s group for the first time finds stable xenon oxides, and concludes that high pressure is necessary for their stability.

The new structures are very rich in chemistry: with increasing pressure, increasing oxidation states of xenon are found, from +2 to +4 to +6. Predictions include some very unusual structures; for example, the P42/mnm phase of XeO3 contains linear chains of O2 molecules, which partially dissociate on increasing pressure. The authors found a very clear electronic signature of different valence states of xenon in different structures – something that could pave the way for new advances in the theory of chemical bonding. Another surprise was the unexpectedly high (50%) degree of ionicity in these semiconducting compounds.

“Chemical bonding appears to be simpler than expected by many,” said graduate student Qiang Zhu, the lead author of this paper. “You don’t need to invoke d-orbitals and exotic types of hybridization of Xe atoms. Bonding is significantly ionic; valence states differ by the number of p-electrons removed from Xe atoms, and pressure is essential for enabling such significantly ionic bonding”. Pressure-induced ionization, observed in many other compounds and even pure elements, appears to soften interatomic repulsions.

“In addition to providing a likely solution to the missing xenon paradox and clarifying essential aspects of xenon chemistry, our study may result in practical applications,” says Oganov. “For example, the ability of xenon to form strong chemical bonds with oxygen and other elements, and to be trapped in crystalline defects, suggests their use as non-classical luminescence centers and active sites for catalysis”.

(1) Zhu Q., Jung D.Y., Oganov A.R., Glass C.W., Gatti C., Lyakhov A.O. Stability of xenon oxides at high pressures. Nature Chemistry doi:10.1038/nchem.1497 (2012). http://www.nature.com/nchem/journal/vaop/ncurrent/pdf/nchem.1497.pdf

Artem R. Oganov | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie