Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ancient Fossilized Sea Creatures Yield Oldest Biomolecules Isolated Directly From a Fossil

20.02.2013
Though scientists have long believed that complex organic molecules couldn’t survive fossilization, some 350-million-year-old remains of aquatic sea creatures uncovered in Ohio, Indiana, and Iowa have challenged that assumption.

The spindly animals with feathery arms—called crinoids, but better known today by the plant-like name “sea lily”—appear to have been buried alive in storms during the Carboniferous Period, when North America was covered with vast inland seas. Buried quickly and isolated from the water above by layers of fine-grained sediment, their porous skeletons gradually filled with minerals, but some of the pores containing organic molecules were sealed intact.

That’s the conclusion of Ohio State University geologists, who extracted the molecules directly from individual crinoid fossils in the laboratory, and determined that different species of crinoid contained different molecules. The results will appear in the March issue of the journal Geology.

William Ausich, professor in the School of Earth Sciences at Ohio State and co-author of the paper, explained why the organic molecules are special.

“There are lots of fragmented biological molecules—we call them biomarkers—scattered in the rock everywhere. They’re the remains of ancient plant and animal life, all broken up and mixed together,” he said. “But this is the oldest example where anyone has found biomarkers inside a particular complete fossil. We can say with confidence that these organic molecules came from the individual animals whose remains we tested.”

The molecules appear to be aromatic compounds called quinones, which are found in modern crinoids and other animals. Quinones sometimes function as pigments or as toxins to discourage predators.

Lead author Christina O’Malley, who completed this work to earn her doctoral degree, first began the study when she noticed something strange about some crinoids that had perished side by side and become preserved in the same piece of rock: the different species were preserved in different colors.

In one rock sample used in the study, one crinoid species appears a light bluish-gray, while another appears dark gray and yet another more of a creamy white. All stand out from the color of the rock they were buried in. The researchers have since found similar fossil deposits from around the Midwest.

“People noticed the color differences 100 years ago, but no one ever investigated it,” O’Malley said. “The analytical tools were not available to do this kind of work as they are today.”

O’Malley isolated the molecules by grinding up small bits of fossil and dissolving them into a solution. Then she injected a tiny sample of the solution into a machine called a gas chromatograph mass spectrometer. The machine vaporized the solution so that a magnet could separate individual molecules based on electric charge and mass. Computer software identified the molecules as similar to quinones.

Then, with study co-author and Ohio State geochemist Yu-Ping Chin, she compared the organic molecules from the fossils with the molecules that are common in living crinoids today. Just as the researchers suspected, quinone-like molecules occur in both living crinoids and their fossilized ancestors.

Though different colored fossils contained different quinones, the researchers cautioned that there’s no way to tell whether the quinones functioned as pigments, or that the preserved colors as they appear today were similar to the colors that the crinoids had in life.

Part of why the crinoids were so well preserved has to do with the structure of their skeletons, the researchers said. Like sand dollars, crinoids have skin on top of a hard calcite shell. In the case of crinoids, their long bodies are made up of thousands of stacked calcite rings, and each ring is a single large calcite crystal that contains pores filled with living tissue. When a crinoid dies, the tissue will start to decay, but calcite will precipitate into the pores, and calcite is stable over geologic time. Thus, organic matter may become sealed whole within the rock.

“We think that rock fills in the skeleton according to how the crystals are oriented. So it’s possible to find large crystals filled in such a way that they have organic matter still trapped inside,” Ausich said.

The location of the fossils was also key to their preservation. In the flat American Midwest, the rocks weren’t pushed up into mountain chains or heated by volcanism, so from the Ohio State geologists’ perspective, they are pristine.

Their next challenge is to identify the exact type of quinone molecules they found, and determine how much information about individual species can be gleaned from them.

“These molecules are not DNA, and they’ll never be as good as DNA as a means to define evolutionary relationships, but they could still be useful,” Ausich said. “We suspect that there’s some kind of biological signal there—we just need to figure out how specific it is before we can use it as a means to track different species.”

This research was sponsored by the National Science Foundation and the Geological Society of America.

Contacts: Christina O'Malley, Omalley.47@osu.edu
William Ausich, (614) 292-3353; Ausich.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Volcanic eruption masked acceleration in sea level rise
26.08.2016 | National Science Foundation

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Meteoriteneinschlag im Nano-Format

Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

Ein Meteorit, der in flachem Winkel auf die Erde trifft, kann gewaltige Verwüstungen anrichten: Er schrammt über die Erdoberfläche und legt oft eine lange...

Im Focus: Flexibel statt starr

Gezielter und effizienter Transport zellulärer Frachten durch physikalischen Mechanismus

Damit Zellen richtig funktionieren können, müssen Frachten innerhalb der Zelle ständig von einem Ort zum anderen transportiert werden, wobei es ähnlich zugeht...

Im Focus: Elektronen am Tempolimit

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so...

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Electronics Goes Green“ – die weltweit größte Fachtagung zu Nachhaltigkeit in der Elektronik

30.08.2016 | Veranstaltungen

Aachen macht (3D-)Druck

30.08.2016 | Veranstaltungen

Fachkonferenz: Sichere Trinkwasserversorgung in Entwicklungsländern

30.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Laser, LED und OLED: Duell im Scheinwerferlicht

30.08.2016 | Seminare Workshops

Zuverlässige Schalter

30.08.2016 | Seminare Workshops

Krebserkrankungen: Tumorkachexien molekular abschalten

30.08.2016 | Biowissenschaften Chemie