Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


X-ray laser helps slay parasite that causes sleeping sickness

An international team of scientists, using the world’s most powerful X-ray laser, has revealed the three dimensional structure of a key enzyme that enables the single-celled parasite that causes African trypanosomiasis (or sleeping sickness) in humans.
With the elucidation of the 3D structure of the cathepsin B enzyme, it will be possible to design new drugs to inhibit the parasite (Trypanosoma brucei) that causes sleeping sickness, leaving the infected human unharmed.

The research team, including several ASU scientists, is led by the German Electron Synchrotron (DESY) scientist Henry Chapman from the Center of Free-Electron Laser Science (CFEL), professor Christian Betzel from the University of Hamburg and Lars Redecke from the SIAS joint Junior Research Group at the Universities of Hamburg and Lübeck. They report their findings this week in Science.

"This is the first new biological structure solved with a free-electron laser," said Chapman of the development.

"These images of an enzyme, which is a drug target for sleeping sickness, are the first results from our new ‘diffract-then-destroy’ snapshot X-ray laser method to show new biological structures which have not been seen before,” explained John Spence, ASU Regents’ Professor of Physics. “The work was led by the DESY group and used the Linac Coherent Light Source at the U.S. Department of Energy’s SLAC National Accelerator Laboratory."

Transferred to its mammalian host by the bite of the tsetse fly, the effects of the parasite are almost always fatal if treatment is not received. The sleeping sickness parasite threatens more than 60 million people in sub-Saharan Africa and annually kills an estimated 30,000 people. Current drug treatments are not well tolerated, cause serious side effects and the parasites are becoming increasingly drug resistant.

“This paper is so exciting as it is based on nanocrystals grown by the groups at DESY in Hamburg and at the University of Lübeck inside living insect cells,” said Petra Fromme, a professor in ASU’s Department of Chemistry and Biochemistry. “This is the first novel structure determined by the new method of femtosecond crystallography. The structure may be of great importance for the development of new drugs to fight sleeping sickness, as it shows novel features of the structure of the CatB protein, a protease that is essential for the pathogenesis, including the structure of natural inhibitor peptide bound in the catalytic cleft of the enzyme.”

An additional difficulty includes the fact that the cathepsin B enzyme is also found in humans and all mammals. However the discovery of the enzyme’s 3D structure has enabled the researchers to pinpoint distinctive structural differences between the human and the parasite’s form of the enzyme. Subsequent drug targets can selectively block the parasite’s enzyme, leaving the patient’s intact.

In addition to Spence and Fromme, other ASU members of the team are Bruce Doak, professor of physics; Uwe Weierstall, research professor in physics; faculty research associates Raimund Fromme, Ingo Grotjohann and Tzu-Chiao Chao; Nadia Zatsepin, post-doctoral researcher, graduate students Christopher Kupitz (Biochemistry), D. Wang (Physics) and Mark Hunter and Richard Kirian who graduated with Ph.D.s from ASU in Chemistry and Physics respectively and now work on the femtosecond crystallography project at Lawrence Livermore National Laboratory and DESY.

The ASU group developed the sample delivery system, worked on the characterization of the crystals with dynamic light scattering and SONNIC and did the early development work on the new data analysis method. All ASU participants are members of the College of Liberal Arts & Sciences.

International team members in addition to those already mentioned include researchers from the Max Planck Institute, Heidelberg, University of Gothenburg, University of Tübingen and Lawrence Livermore National Laboratory.
Jenny Green,
Department of Chemistry and Biochemistry

Jenny Green | EurekAlert!
Further information:

Further reports about: 3D structure ASU Biochemistry DESY Max Planck Institute drug treatment

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Quanten-Schnüffelnase

Der Laser, der zugleich ein Detektor ist: An der TU Wien wurde ein mikroskopisch kleiner Sensor entwickelt, mit dem man gleichzeitig verschiedene Gase nachweisen kann.

Wir Menschen erschnüffeln unterschiedliche Gerüche und Düfte durch chemische Rezeptoren in unserer Nase. Doch für den technischen Nachweis von Gasen greift man...

Im Focus: „Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet [Science, 21. Oktober 2016].

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz...

Im Focus: Elektronik mit Licht beschleunigen

Wissenschaftler am MPQ haben mit ultrakurzen Laserpulsen die schnellsten jemals erzeugten elektrischen Ströme in Festkörpern gemessen. Die Elektronen führten in einer Sekunde achtmillionen Milliarden Schwingungen aus, ein absoluter Rekord für die Steuerung von Elektronen in Festkörpern.

Die Leistungsfähigkeit von modernen elektronischen Geräten wie Computern oder Mobilfunkgeräten wird durch die Geschwindigkeit bestimmt, mit der die...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Innovative Lösungen für multifunktionale Werkstoffe und effiziente kurze Prozessketten

IPF Dresden präsentiert sich im Science Campus der Kunststoffmesse 2016

Auf der weltgrößten Kunststoffmesse K 2016 vom 19. bis 26. Oktober 2016 in Düsseldorf präsentiert sich das Leibniz-Institut für Polymerforschung Dresden e. V....

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Experten treffen sich am 27. Oktober zum siebten „NORTH Regio Day on Infection“ in Braunschweig

20.10.2016 | Veranstaltungen

Sicherheit und Vertrauen in der vernetzten Welt

20.10.2016 | Veranstaltungen

Fachtagung „55. Heidelberger Grand Round“ mit internationalen Krebsexperten

20.10.2016 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Die Quanten-Schnüffelnase

21.10.2016 | Energie und Elektrotechnik

Sterilkonnektoren der nächsten Generation

21.10.2016 | Biowissenschaften Chemie

Neuer Mechanismus hinter der Wirkung von Hautkrebs-Medikament Imiquimod entschlüsselt

21.10.2016 | Biowissenschaften Chemie