Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Scientists unravel the mystery of marine methane oxidation

13.11.2012
Researchers uncover how microorganisms on the ocean floor protect the atmosphere against methane

Microbiologists and geochemists from the Max Planck Institute for Marine Microbiology, along with their colleagues from Vienna and Mainz, show that marine methane oxidation coupled to sulfate respiration can be performed by a single microorganism, a member of the ancient kingdom of the Archaea, and does not need to be carried out in collaboration with a bacterium, as previously thought. They published their discovery as an article in the renowned scientific journal Nature.


The enrichment of the microorganisms responsible for marine AOM, archaea in red and bacteria in green from the Isis Mud Volcano in the Mediterranean Sea has taken 8 years of continuous incubation. Without these cultures it would not have been possible to trace down the complex sulfur cycling involved in AOM.

© Jana Milucka, MPI f. Marine Microbiology


In this model, methane oxidation and sulfate respiration to elemental sulfur (or all the way to sulfide) is performed by the methanotrophic archaea (ANME). The associated bacteria (DSS) are disproportionators (sulfur fermentors), which take up produced elemental sulfur in the form of disulfide and turn it into sulfate and sulfide. Dark circles represent iron- and phosphorus-rich precipitates found in the bacteria.

© Jana Milucka, MPI f. Marine Microbiology

Vast amounts of methane are stored under the ocean floor. Anaerobic oxidation of methane coupled to sulfate respiration (AOM) prevents the release of this potent greenhouse gas into the atmosphere. Although the process was discovered 35 years ago it has remained a long standing mystery as to how microorganisms perform this reaction. A decade ago, an important discovery was made which showed that two different microorganisms are often associated with AOM. It was proposed that these two microorganisms perform different parts of the AOM reaction. One, an archaeon, was supposed to oxidize methane and the other, a bacterium, was supposed to respire sulfate. This implied the existence of an intermediate compound to be shuttled from the methane oxidizer to the sulfate respirer.

Now, the team around Professor Kuypers has turned this whole model on its head. They show that the archaeon not only oxidizes methane but can also respire sulfate and does not necessarily need the bacterial partner. It appears that the archaeon does not employ the common enzyme toolbox that other known sulfate-respiring microorganisms use, but relies on a different, unknown pathway.

The basis for this dramatic shift in thinking is the observation that elemental sulfur is formed and accumulates in the methane-oxidizing archaeon. “Using chromatographic and state-of-the-art spectroscopic techniques we found surprisingly high concentrations of elemental sulfur in our cultures”, says Professor Marcel Kuypers and adds: “The single-cell techniques showed that the sulfur content in the methane-degrading archaeon was much higher than in the bacterium. Our experiments show that this sulfur is formed during sulfate respiration.”
This finding begs the question: What does the bacterium do if the archaeon does both sulfate respiration and methane oxidation? “The bacteria actually make a living off of the elemental sulfur produced by the archaea”, explains Jana Milucka, first author of the study. “The bacteria grow by splitting the elemental sulfur into sulfate and hydrogen sulfide. This is a form of fermentation, like the process that produces alcohol.”

“Until now we have always had trouble explaining the occurrence of elemental sulfur in oxygen-free sediments”, notes Tim Ferdelman, scientist at the MPI Bremen and coauthor on the publication. ”Our discoveries not only provide a mechanism for marine methane oxidation but also cast a new light on the carbon and sulfur cycling in marine, methane-rich sediments.”

Contact

Dr. Marcel Kuypers
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-602
Fax: +49 421 2028-690
Email: mkuypers@­mpi-bremen.de
Dr. Rita Dunker
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-856
Fax: +49 421 2028-790
Email: rdunker@­mpi-bremen.de
Dr. Manfred Schlösser
Press Officer
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 4 212028-704
Email: mschloes@­mpi-bremen.de

Original publication
Jana Milucka, Timothy G. Ferdelman, Lubos Polerecky, Daniela Franzke, Gunter Wegener, Markus Schmid, Ingo Lieberwirth, Michael Wagner, Friedrich Widdel, Marcel M. M. Kuypers
Zerovalent sulfur is a key intermediate in marine methane oxidation
Nature, 2012. 8 November, 2012. Doi: 10.1038/nature11656

Dr. Marcel Kuypers | Max-Planck-Institut
Further information:
http://www.mpg.de/6619070/marine-methane-oxidation

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexibel statt starr

Gezielter und effizienter Transport zellulärer Frachten durch physikalischen Mechanismus

Damit Zellen richtig funktionieren können, müssen Frachten innerhalb der Zelle ständig von einem Ort zum anderen transportiert werden, wobei es ähnlich zugeht...

Im Focus: Elektronen am Tempolimit

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so...

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungen

IT-Sicherheit – Wettlauf gegen die Zeit

26.08.2016 | Veranstaltungen

Neue Ideen für die Schifffahrt

24.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geothermieforschung: Bund fördert Projekt am Drilling Simulator Celle mit 3,8 Millionen Euro

26.08.2016 | Förderungen Preise

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungsnachrichten

Körperwärme als Stromquelle

26.08.2016 | Materialwissenschaften