Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schützen die richtigen Lipide in der Membran vor Krebs?

29.01.2013
Forscher der Universität Jena entdecken neuen Regulationsmechanismus des Zellwachstums

Innerhalb einer lebenden Zelle kommt dem Enzym „Proteinkinase B“ eine zentrale Rolle zu. Im „Maschinenraum“ der Zellen, in dem ihr Wachstum und ihre Vermehrung gesteuert werden, übernimmt es die Funktion eines Hauptschalters: Die Proteinkinase B modifiziert andere Enzyme mit chemischen Gruppen und schaltet diese so jeweils „an“ oder „aus“.


Dr. Andreas Koeberle von der Uni Jena prüft eine Lipidprobe. Der Biochemiker hat gemeinsam mit Kollegen herausgefunden, dass bestimmte Lipide aus der Zellmembran das Zellwachstum drosseln können. Foto: Jan-Peter Kasper/FSU

„Doch nicht nur beim normalen Zellwachstum ist das Enzym damit einer der Hauptakteure“, sagt Dr. Andreas Koeberle von der Friedrich-Schiller-Universität Jena. „Auch in Tumorzellen, die sich unkontrolliert vermehren, ist die Proteinkinase B maßgeblich am Wachstum beteiligt“, so der Biochemiker weiter, der im Team um Prof. Dr. Oliver Werz vom Lehrstuhl für Pharmazeutische und Medizinische Chemie forscht.

Wie dieses Schlüssel-Enzym selbst in seiner Aktivität reguliert wird, ist daher ein viel erforschter Gegenstand. „Je mehr wir über dieses Enzym wissen, umso besser können wir verstehen, wie es zur Krebsentstehung kommt und umso leichter wird es, gezielt in diese Regulationsmechanismen einzugreifen und das Tumorwachstum zu drosseln“, erläutert Dr. Koeberle.

Der Jenaer Forscher und seine Kollegen haben nun gemeinsam mit Wissenschaftlern aus Tokyo und Tübingen einen bisher gänzlich unbekannten Regulationsmechanismus für die Proteinkinase B entdeckt, den sie in der soeben erschienenen Ausgabe des renommierten Fachmagazins „Proceedings of the National Academy of Sciences of the United States of America“ (PNAS) veröffentlicht haben (DOI:10.1073/pnas.1216182110).

Demnach wird das Enzym von einem Bestandteil der Zellmembranen – einem Lipid-Molekül – direkt in seiner Aktivität beeinflusst. „Das Lipid hemmt die Wirkung der Proteinkinase B und unterdrückt damit das weitere Zellwachstum“, sagt Andreas Koeberle. Interessanterweise sei das Lipid-Molekül kein Unbekannter. Es handelt sich dabei um ein Speichermolekül der sogenannten Arachidonsäure, die wiederum eine wichtige Funktion bei der Entstehung von Entzündungen spielt. „Wir haben ein genau gegenläufig oszillierendes Muster dieser beiden Substanzen im Verlauf des Zellzyklus gefunden“, so der Forscher. Wenn die Konzentration des Membran-Lipids ansteigt, nimmt die Aktivität der Proteinkinase B ab. Sinkt die Lipid-Konzentration wieder, steigt die Aktivität des Enzyms an.

Für ihre Untersuchungen haben die Jenaer Wissenschaftler in Zellkulturen zu unterschiedlichen Zeitpunkten ihres Vermehrungszyklus die Lipidzusammensetzung durch Kombination chromatographischer und massenspektrometrischer Methoden umfassend analysiert. Auf diese Weise haben sie jeweils „Momentaufnahmen“ des gesamten Lipidstoffwechsels der Zellen erhalten und mit der Aktivität der Proteinkinase B abgleichen können.

Diese Erkenntnisse, so betont Dr. Koeberle, seien bislang reine Grundlagenforschung. Doch schon jetzt zeichnen sich vielversprechende Anknüpfungspunkte für weitergehende Studien und eine mögliche Anwendung dieses Wissens ab. Denn: „Es gibt bereits eine ganze Reihe von Medikamenten, die in den Arachidonsäure-Stoffwechsel eingreifen“, so Koeberle und nennt als Beispiel entzündungshemmende Medikamente, wie Aspirin oder Indomethacin, die bei kontinuierlicher Einnahme nachweißlich vor Krebs schützen. Denkbar sei, dass diese wachstumshemmende Wirkung nicht ausschließlich auf eine verringerte Bildung von entzündungsfördernden Arachidonsäure-Abkömmlingen zurückzuführen ist, wie bislang angenommen, sondern auch auf einen erhöhten Gehalt des Arachidonsäure-Speicherlipids. Das Jenaer Team plant daher nun den Einfluss unterschiedlicher Arzneistoffe auf den neu entdeckten Regulationsmechanismus genauer unter die Lupe zu nehmen.

Original-Publikation:
Koeberle A. et al. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing AKT membrane binding, PNAS, 2013 (DOI:10.1073/pnas.1216182110)
Kontakt:
Dr. Andreas Koeberle, Prof. Dr. Oliver Werz
Institut für Pharmazie der Friedrich-Schiller-Universität Jena
Philosophenweg 14, 07743 Jena
Tel.: 03641 / 949815, 03641 / 949801
E-Mail: andreas.koeberle[at]uni-jena.de, oliver.werz[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebserkrankungen: Tumorkachexien molekular abschalten
30.08.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Künstliche Enzyme werden immer «natürlicher»
30.08.2016 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Meteoriteneinschlag im Nano-Format

Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

Ein Meteorit, der in flachem Winkel auf die Erde trifft, kann gewaltige Verwüstungen anrichten: Er schrammt über die Erdoberfläche und legt oft eine lange...

Im Focus: Flexibel statt starr

Gezielter und effizienter Transport zellulärer Frachten durch physikalischen Mechanismus

Damit Zellen richtig funktionieren können, müssen Frachten innerhalb der Zelle ständig von einem Ort zum anderen transportiert werden, wobei es ähnlich zugeht...

Im Focus: Elektronen am Tempolimit

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so...

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Electronics Goes Green“ – die weltweit größte Fachtagung zu Nachhaltigkeit in der Elektronik

30.08.2016 | Veranstaltungen

Aachen macht (3D-)Druck

30.08.2016 | Veranstaltungen

Fachkonferenz: Sichere Trinkwasserversorgung in Entwicklungsländern

30.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Laser, LED und OLED: Duell im Scheinwerferlicht

30.08.2016 | Seminare Workshops

Zuverlässige Schalter

30.08.2016 | Seminare Workshops

Krebserkrankungen: Tumorkachexien molekular abschalten

30.08.2016 | Biowissenschaften Chemie