Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RNA macht Lungenkrebszellen mobil

05.02.2013
Das RNA-Molekül MALAT1 ist ein Marker für den Verlauf einer Lungenkrebs-Erkrankung. Heidelberger Wissenschaftler fanden nun heraus, dass MALAT1 in Krebszellen Gene aktiviert, die Metastasen begünstigen. Bei Mäusen reduzierte ein Wirkstoff, der MALAT1 gezielt blockiert, Anzahl und Größe von Metastasen eines Lungentumors.

Der überwiegende Teil – rund 80 Prozent – unseres Erbguts enthält keine Bauanleitung für Proteine, wird aber dennoch in RNA-Moleküle abgeschrieben. Diese so genannten nicht-kodierenden RNAs übernehmen vielfältige Aufgaben in der Zelle. Neben einer gut untersuchten Gruppe kleiner RNAs sind auch langkettig nicht-kodierende Ribonukleinsäuren bekannt, die aus mindestens 200 Bausteinen bestehen.

Die langen nicht-kodierenden RNAs regulieren unter anderem die Zellteilung, das Wachstum oder den Zelltod. Daher war es auch nicht überraschend, dass viele dieser Steuermoleküle mit dem Fortschreiten von Krebserkrankungen in Verbindung stehen. So auch die RNA MALAT1, die bei verschiedenen Formen von Lungenkrebs als Marker für den Verlauf der Erkrankung gilt: „Je mehr MALAT1 die Tumorzellen bilden, desto wahrscheinlicher ist es, dass Metastasen auftreten und die Krankheit sehr ungünstig verläuft“, sagt Dr. Sven Diederichs, der das Molekül im Rahmen seiner Doktorarbeit entdeckt hatte. Diederichs leitet inzwischen eine Nachwuchsgruppe, die sowohl im Deutschen Krebsforschungszentrum als auch am Pathologischen Institut des Universitätsklinikums Heidelberg angesiedelt ist.

In seiner aktuellen Arbeit untersuchte der Wissenschaftler, auf welche Weise MALAT1 tatsächlich in zelluläre Vorgänge eingreift und dadurch die Metastasierung begünstigt. Mit seinem Team hatte er vor kurzem eine Methode entwickelt, um lange nicht-kodierende RNA-Moleküle in der Zelle gezielt auszuschalten. Dazu fügen die Forscher Signalsequenzen ins Erbgut ein, die bewirken, dass die RNA-Moleküle gleich nach ihrer Entstehung wieder abgebaut werden. Anschließend beobachten sie die daraus resultierenden Veränderungen der Zellbiologie.

Dem Team um Diederichs gelang es erstmals, MALAT1 in Lungenkrebszellen in der Kulturschale nahezu vollständig auszuschalten. MALAT1, so entdeckten sie an den veränderten Zellen, reguliert zahlreiche Gene, die an der Metastasierung beteiligt sind. Das bewirkt unter anderem, dass die MALAT1-negativen Tumorzellen in ihrer Beweglichkeit eingeschränkt sind und daher weniger invasiv in umgebendes Gewebe einwandern können. Wurden sie auf Mäuse übertragen, bildeten sie in der Lunge der Tiere deutlich weniger Tumorherde als Krebszellen mit intaktem MALAT1.

Ermutigt durch dieses Ergebnis prüften die Forscher, ob MALAT1 auch im intakten Organismus blockiert und damit die Metastasierung verhindert werden kann. Gemeinsam mit dem US-amerikanischen Unternehmen ISIS Pharmaceuticals entwickelten die Heidelberger Wissenschaftler kleine Nukleinsäure-Schnipsel (Antisense-Oligonukleotide), die von den Zellen aufgenommen werden und RNA-Moleküle gezielt blockieren.

In Mäusen, denen menschliche Lungenkrebszellen injiziert wurden, verzögerten die MALAT1-spezifischen Antisense-Schnipsel die Metastasenbildung: In den Lungen der Tiere fanden sich weniger und kleinere Krebsherde als bei Artgenossen, die den Wirkstoff nicht erhalten hatten.

„Rund zehn Jahre, nachdem wir MALAT1 als prognostischen Marker bei Lungenkrebs entdeckt haben, verstehen wir jetzt, wie diese nicht-kodierende RNA die Metastasierung beeinflusst. Darüber hinaus hat sich die RNA als mögliches Zielmolekül für eine innovative Therapie mit Antisense-RNAs herausgestellt.“ Diesen vielversprechenden Ansatz verfolgen Sven Diederichs und sein Team nun intensiv weiter, um Lungenkrebs künftig vielleicht an seiner Ausbreitung hindern zu können.

Tony Gutschner, Monika Hämmerle, Moritz Eißmann, Jeff Hsu, Youngsoo Kim, Gene Hung, Alexey Revenko, Gayatri Arun, Marion Stentrup, Matthias Groß, Martin Zörnig, A. Robert MacLeod, David L. Spector, Sven Diederichs: The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research 2013, DOI: 10.1158/0008-5472.CAN-12-2850

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Diese Pressemitteilung ist abrufbar unter www.dkfz.de/pressemitteilungen

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968
presse@dkfz.de
Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
presse@dkfz.de

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erfolgreicher recyceln: Proteinqualitätskontrolle in der Zelle
26.08.2016 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Flexibel statt starr
26.08.2016 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexibel statt starr

Gezielter und effizienter Transport zellulärer Frachten durch physikalischen Mechanismus

Damit Zellen richtig funktionieren können, müssen Frachten innerhalb der Zelle ständig von einem Ort zum anderen transportiert werden, wobei es ähnlich zugeht...

Im Focus: Elektronen am Tempolimit

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so...

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungen

IT-Sicherheit – Wettlauf gegen die Zeit

26.08.2016 | Veranstaltungen

Neue Ideen für die Schifffahrt

24.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geothermieforschung: Bund fördert Projekt am Drilling Simulator Celle mit 3,8 Millionen Euro

26.08.2016 | Förderungen Preise

VDE und IEEE veranstalten Weltkongress der Consumer-Elektronik auf der IFA

26.08.2016 | Veranstaltungsnachrichten

Körperwärme als Stromquelle

26.08.2016 | Materialwissenschaften