Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

New Insights Into Mosquitoes’ Role as Involuntary Bioterrorists

03.12.2012
Mosquitos are involuntary bioterrorists.

For many years scientists thought that mosquitoes provided the disease organisms which they spread with a relatively free ride because the insects didn’t have much in the way of natural defenses to fight off these microscopic stowaways.


Hillyer Lab / Vanderbilt University

This microscopic fluorescent image of the mosquito's circulatory system shows muscle cells in green; cellular DNA in blue and periostal hemocytes in orange.

Recent research, however, has revealed that mosquitoes have surprisingly sophisticated immune systems. Unlike humans and most other animals, mosquitoes do not generate antibodies that identify and attack specific infectious agents. However, they have developed alternative methods for destroying various pathogens, including parasites that cause malaria.

In the latest study of the mosquito’s immune system – published online on Nov. 29 in the journal PLOS Pathogens – a pair of Vanderbilt biologists have discovered mosquitoes possess a previously unknown mechanism for destroying pathogens that takes advantage of the peculiarities of the insect’s circulatory system to increase its effectiveness.

Studies of this sort are providing the information needed to manipulate the mosquito immune system to block malaria parasites more effectively and to develop other novel disease control strategies.

“It may come as a surprise to many people, but mosquitoes get sick too and they need to protect themselves,” said Julián Hillyer, assistant professor of biological sciences, who conducted the research with graduate student Jonas King.

“The mosquito’s immune system isn’t as complex as ours. About 350 of its 12,500 genes have immune functions,” Hillyer said. “But it is remarkably effective. The vast majority of the malaria parasites that infect a mosquito die before they can get into the salivary glands where they can infect vertebrate prey, such as humans.”

“Pathogens like those that cause malaria, dengue and yellow fevers come from the female’s blood meal and end up in the mosquito’s gut,” Hillyer said. “They then leave the gut and enter the mosquito’s main body cavity, and from there they have to make their way to its salivary glands.”

Inside the body cavity, pathogens have to fight two main forces: the swift circulation of the mosquito’s own blood, and attacks from the mosquito’s immune system.

The mosquito’s circulatory system is dramatically different from that of mammals and humans. A long tube extends from the insect’s head to tail and is hung just under the cuticle shell that forms the mosquito’s back. The heart makes up the rear two-thirds of the tube and consists of a series of valves within the tube and helical coils of muscle that surround the tube. These muscles cause the tube to expand and contract, producing a worm-like peristaltic pumping action.

Most of the time, the heart pumps the mosquito’s blood—a clear liquid called hemolymph—toward the mosquito’s head, but occasionally it reverses direction. The mosquito doesn’t have arteries and veins like mammals. Instead, the blood flows from the heart into the abdominal cavity and eventually cycles back through the heart. “The mosquito’s heart works something like the pump in a garden fountain,” Hillyer said.

In order to make it to their goal, pathogens must pass through one of the heart valves. As a result, the valves act as physical bottlenecks during the migration of viruses and malaria parasites.

Cells called hemocytes are an important element in the mosquito’s defense system. These are special immune cells carried in the hemolymph that play a role analogous to white blood cells in humans. They circulate around the body with the hemolyph and attack foreign cells and viruses when they contact them.

What Hillyer and King discovered was that when a mosquito becomes infected with bacteria or malaria parasites, a population of hemocytes is recruited to the valves of the heart, where they capture and destroy invading pathogens. These new mosquito immune cells, which they have named periostial hemocytes, substantially increase their odds of encountering and destroying invaders by congregating in areas of high hemolymph flow.

“What happens to these pathogens while they are carried inside the mosquito’s body is a critical part of the infection cycle that we are just beginning to understand,” said Hillyer.

This research was funded by the National Science Foundation grant number IOS-1051636.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie