Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

New Insights Into Mosquitoes’ Role as Involuntary Bioterrorists

03.12.2012
Mosquitos are involuntary bioterrorists.

For many years scientists thought that mosquitoes provided the disease organisms which they spread with a relatively free ride because the insects didn’t have much in the way of natural defenses to fight off these microscopic stowaways.


Hillyer Lab / Vanderbilt University

This microscopic fluorescent image of the mosquito's circulatory system shows muscle cells in green; cellular DNA in blue and periostal hemocytes in orange.

Recent research, however, has revealed that mosquitoes have surprisingly sophisticated immune systems. Unlike humans and most other animals, mosquitoes do not generate antibodies that identify and attack specific infectious agents. However, they have developed alternative methods for destroying various pathogens, including parasites that cause malaria.

In the latest study of the mosquito’s immune system – published online on Nov. 29 in the journal PLOS Pathogens – a pair of Vanderbilt biologists have discovered mosquitoes possess a previously unknown mechanism for destroying pathogens that takes advantage of the peculiarities of the insect’s circulatory system to increase its effectiveness.

Studies of this sort are providing the information needed to manipulate the mosquito immune system to block malaria parasites more effectively and to develop other novel disease control strategies.

“It may come as a surprise to many people, but mosquitoes get sick too and they need to protect themselves,” said Julián Hillyer, assistant professor of biological sciences, who conducted the research with graduate student Jonas King.

“The mosquito’s immune system isn’t as complex as ours. About 350 of its 12,500 genes have immune functions,” Hillyer said. “But it is remarkably effective. The vast majority of the malaria parasites that infect a mosquito die before they can get into the salivary glands where they can infect vertebrate prey, such as humans.”

“Pathogens like those that cause malaria, dengue and yellow fevers come from the female’s blood meal and end up in the mosquito’s gut,” Hillyer said. “They then leave the gut and enter the mosquito’s main body cavity, and from there they have to make their way to its salivary glands.”

Inside the body cavity, pathogens have to fight two main forces: the swift circulation of the mosquito’s own blood, and attacks from the mosquito’s immune system.

The mosquito’s circulatory system is dramatically different from that of mammals and humans. A long tube extends from the insect’s head to tail and is hung just under the cuticle shell that forms the mosquito’s back. The heart makes up the rear two-thirds of the tube and consists of a series of valves within the tube and helical coils of muscle that surround the tube. These muscles cause the tube to expand and contract, producing a worm-like peristaltic pumping action.

Most of the time, the heart pumps the mosquito’s blood—a clear liquid called hemolymph—toward the mosquito’s head, but occasionally it reverses direction. The mosquito doesn’t have arteries and veins like mammals. Instead, the blood flows from the heart into the abdominal cavity and eventually cycles back through the heart. “The mosquito’s heart works something like the pump in a garden fountain,” Hillyer said.

In order to make it to their goal, pathogens must pass through one of the heart valves. As a result, the valves act as physical bottlenecks during the migration of viruses and malaria parasites.

Cells called hemocytes are an important element in the mosquito’s defense system. These are special immune cells carried in the hemolymph that play a role analogous to white blood cells in humans. They circulate around the body with the hemolyph and attack foreign cells and viruses when they contact them.

What Hillyer and King discovered was that when a mosquito becomes infected with bacteria or malaria parasites, a population of hemocytes is recruited to the valves of the heart, where they capture and destroy invading pathogens. These new mosquito immune cells, which they have named periostial hemocytes, substantially increase their odds of encountering and destroying invaders by congregating in areas of high hemolymph flow.

“What happens to these pathogens while they are carried inside the mosquito’s body is a critical part of the infection cycle that we are just beginning to understand,” said Hillyer.

This research was funded by the National Science Foundation grant number IOS-1051636.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

Folgenschwere Luftverschmutzung: Forum zur Chemie der Atmosphäre

28.09.2016 | Veranstaltungen

European Health Forum Gastein 2016 beginnt

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungsnachrichten

Wie Blockchain die Finanzwelt verändert

28.09.2016 | Wirtschaft Finanzen

Neue Plasmaanlage - Präzise und hoch entwickelte Chips

28.09.2016 | Physik Astronomie