Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herzmuskelzellen aus Vorläuferzellen hergestellt – Hoffnung für Herzinfarktpatienten

09.11.2012
Durchbruch in der Herzstammzellforschung: Ein Forscherteam um Professor Katja Schenke-Layland vom Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart hat erstmals Oberflächenmarker gefunden, mit denen sich lebende, funktionale kardiovaskuläre Vorläuferzellen der Maus identifizieren und isolieren lassen.

Zugleich gelang es dem Team, dass sich diese kardiovaskulären Vorläuferzellen (CPCs) aus induziert-pluripotenten Stammzellen (iPS-Zellen) bilden. Aus diesen CPCs entwickelten sich alle im Herz vorkommenden Zellen. In der Maus integrierten sie sich in das Herz.


Werden die aus den GFP-iPS-Zellen entstandenen CPCs (grün) in das Herz einer lebenden Maus injiziert, verwandeln sie sich in funktionelles Herzmuskelgewebe (rot). Zellkerne sind blau.
Copyright: Fraunhofer IGB

Allein in Deutschland erleiden jedes Jahr mehr als 250 000 Menschen einen Herzinfarkt. Zwar ist die Sterblichkeitsrate hierzulande seit wenigen Jahren rückläufig, doch zählt der Herzinfarkt in den Industrienationen nach wie vor zu den häufigsten Todesursachen. Bei einem Herzinfarkt stirbt – durch den Verschluss eines Herzkranzgefäßes, welches das Herz mit Blut versorgt – ein Teil des Herzmuskelgewebes ab.

Die Herzmuskelzellen regenerieren sich im erwachsenen Menschen nicht, so dass bei einem großen Teil der Patienten die Pumpleistung des Herzens – und damit ein gutes Stück Lebensqualität – auf Dauer beeinträchtigt ist. Um die Funktionsfähigkeit des Herzens nach einem Herzinfarkt wiederherzustellen, bräuchten Mediziner funktionale adulte, das heißt reife und differenzierte Herzmuskelzellen, wie sie in einem erwachsenen Menschen vorkommen.

Die Differenzierung solch funktionaler Herzmuskelzellen aus klar definierten kardiovaskulären Vorläuferzellen (cardiovascular progenitor cells, CPCs) ist dem Forscherteam um Professor Dr. Katja Schenke-Layland vom Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart und ihren Kollegen Dr. Ali Nsair von der University of California Los Angeles (UCLA) nun im Mausmodell gelungen. Die Arbeiten wurden jüngst in der Fachzeitschrift PLoS ONE (PLoS ONE7 (10):e45603, doi:10.1371/journal.pone.0045603) veröffentlicht. Sie könnten die Therapie von Herzmuskelerkrankungen revolutionieren.

Entwicklung von Herzmuskelzellen aus Vorläuferzellen

Herzmuskelzellen entwickeln sich im Laufe der Embryonalentwicklung des Menschen und anderer Säuger – ebenso wie Endothelzellen und glatte Muskelzellen – aus den kardiovaskulären Vorläuferzellen. Diese sind daher seit langem für die medizinisch-biologische Forschung von großem Interesse, konnten bisher aber nicht wirklich genutzt werden. Der Grund: Die Marker, mit denen sich die kardiovaskulären Vorläuferzellen identifizieren lassen, wie beispielsweise Islet1 oder auch Nkx2.5, befinden sich im Inneren der Zellen. Der Nachweis der Vorläuferzellen geht also zwangsläufig mit ihrer Zerstörung einher. Damit die wertvollen Zellen auch für die Erforschung und Therapie von Herzmuskelerkrankungen zur Verfügung stehen, muss man sie »lebend« aus einer Kultur, in der verschiedene Zelltypen entstehen, herausfischen können.

Oberflächenmarker für kardiovaskuläre Vorläuferzellen identifiziert

An diese Aufgabe machte sich das Forscherteam um Professor Katja Schenke-Layland vom Fraunhofer IGB in Stuttgart und ihren Kollegen Dr. Ali Nsair von der UCLA in den USA, wo Schenke-Layland forschte, bevor sie mit dem Attract-Programm der Fraunhofer-Gesellschaft nach Deutschland zurückkehrte. Mit Erfolg: Sie konnten zwei Marker auf der Oberfläche der kardiovaskulären Vorläuferzellen nachweisen, mit denen sich diese Zellen eindeutig und unter vollem Erhalt ihrer biologischen Funktion identifizieren lassen, die Rezeptoren Flt1 (VEGFR1) und Flt4 (VEGFR3). Die kardiovaskulären Vorläuferzellen konnten die Wissenschaftler mit diesen Markern erstmals lebend markieren und isolieren.

»Für die Suche nach Oberflächenmarkern haben wir die kardiovaskulären Vorläuferzellen mit Hilfe von Genexpressionsanalysen auf Microarrays untersucht«, erläutert die Biologin Schenke-Layland ihre Vorgehensweise. »Diese Studien zeigen genau, welche Gene zu einem definierten Zeitpunkt aktiv sind.« Die aus dieser Analyse resultierenden Daten, jeweils ganz spezifische Abfolgen der vier Basen der DNA, haben die Forscher mit den Sequenzierungsdaten aus existierenden Datenbanken verglichen und auf solche durchsucht, die bereits als Oberflächenmarker bekannt waren.

Aus induziert-pluripotenten Stammzellen entwickeln sich kardiovaskuläre Vorläuferzellen

Doch damit nicht genug. Ermuntert durch den Erfolg, lebende CPCs identifizieren und isolieren zu können, haben die Forscher erstmals CPCs aus klinisch relevanten induziert-pluripotenten Stammzellen (iPS Zellen) »hergestellt«. Hierzu bedienten sie sich einer Methode, für die der japanische Wissenschaftler Shinya Yamanaka erst kürzlich mit dem Nobelpreis für Medizin 2012 ausgezeichnet wurde. Dieser publizierte vor sechs Jahren die revolutionären Ergebnisse, dass nur vier Proteine dafür verantwortlich sind, dass embryonale Stammzellen der Maus, aus frühen Embryonen gewonnen und in Zellkultur gezüchtet, ihre Pluripotenz behielten (Takahashi K., Yamanaka S. Cell 2006; 126(4): 663-676). Brachte er die vier Gene in differenzierte – reife und spezialisierte – Körperzellen ein, ließen sich diese in einen embryonalen Zustand zurückprogrammieren. Aus diesen Zellen, die er iPS-Zellen nannte, können sich wieder alle Körperzellen, beispielsweise Leberzellen, Nervenzellen oder auch Herzmuskelzellen entwickeln.

In ihrer Studie nahmen die Forscher um Schenke-Layland und Nsair, genau wie Yamanaka, Zellen eines Mausstamms. Allerdings solche, die mit einem unter dem Fluoreszenzmikroskop sichtbaren grün fluoreszierenden Protein (GFP) markiert sind. In diese Zellen schleusten sie – wie zuvor der Nobelpreisträger – die von ihm identifizierten vier Yamanaka-Gene über Retroviren als Transportvehikel ein. Tatsächlich ließen sich die reifen Mauszellen auf diese Weise in einen undifferenzierten Zustand zurückversetzen.

In einem nächsten Schritt züchteten die Forscher die GFP-markierten iPS-Zellen im Labor unter verschiedenen Bedingungen mit unterschiedlichen, das Zellwachstum beeinflussenden Faktoren, beispielsweise Wachstumsfaktoren. »Anhand unserer neu etablierten Nachweismethode mittels der Oberflächenmarker konnten wir in der Kultur Flt1- und Flt4-positive CPCs nachweisen und isolieren«, freut sich Schenke-Layland. »Wenn wir diese isolierten Maus-CPCs dann weiter in vitro kultivieren, entwickeln sie sich tatsächlich – wie auch die embryonalen Vorläuferzellen – zu Endothelzellen, glatten Muskelzellen und funktionalen, pulsierenden Herzmuskelzellen.«

Aus iPS-Zellen gewachsene CPCs integrieren sich in das lebende Mausherz

Doch wie verhalten sich die auf diese Weise entwickelten CPCs im lebenden Organismus? Können sich diese Zellen wirklich in das Herzgewebe integrieren und den Herzmuskel regenerieren? Um diese Fragen zu beantworten, injizierten die Wissenschaftler die GFP-markierten CPCs in das Herz einer lebenden Maus. Nach 28 Tagen analysierten die Forscher das Herz der Maus. »Die grün fluoreszierenden Zellen hatten sich zu schlagenden Herzmuskelzellen entwickelt und vollkommen in das Herzmuskelgewebe der Maus integriert«, sagt Schenke-Layland, die auch Stellvertretende Leiterin der Abteilung Zellsysteme am Fraunhofer IGB und Professorin für Biomaterialien in der kardiovaskulären regenerativen Medizin am Klinikum der Eberhard Karls Universität Tübingen ist.

Enormes Potenzial für die Herzforschung

Forscher versuchen seit langem, die Neubildung von Herzmuskelzellen anzuregen. Hierzu injizieren sie Stammzellen oder aus Stammzellen abgeleitete Herzmuskelzellen direkt ins Herz. Obwohl die Mehrzahl der Studien eine mehr oder minder gute Funktionsverbesserung der Herzens feststellte, wurde in den meisten Fällen weder eine langfristige Integration noch die Differenzierung der Zellen in funktionsfähiges Herzmuskelgewebe nachgewiesen.

Das Ergebnis der Gruppe um Schenke-Layland und Nsair eröffnet daher erstmals die Möglichkeit, funktionierende Herzmuskelzellen zu generieren, die sich in das Herzmuskelgewebe integrieren. »Wir konzentrieren uns gegenwärtig auf Untersuchungen mit humanen iPS-Zellen. Wenn wir zeigen können, dass auch humane iPS-Zellen zu kardiovaskulären Vorläuferzellen heranwachsen und diese weiter die Fähigkeit besitzen zu funktionalen Herzmuskelzellen heranzureifen, könnten solche – aus iPS-Zellen gewonnenen – kardiovaskulären Vorläuferzellen bei der Behandlung des erkrankten Herzmuskels eingesetzt werden«, hofft die Wissenschaftlerin.

Förderung

Die Arbeiten der Forschergruppe wurden über ein deutsch-amerikanisches Förderprogramm vom Bundesministerium für Bildung und Forschung (BMBF) und dem California Institute for Regenerative Medicine (CIRM) gefördert. Ferner flossen Mittel der Fraunhofer-Gesellschaft (Attract-Programm) und des Ministeriums für Wissenschaft, Forschung und Kunst Baden-Württemberg ein.

Kontakt
Prof. Dr. Katja Schenke-Layland
Nobelstr. 12
70569 Stuttgart
http://www.igb.fraunhofer.de/de/presse-medien/presseinformationen/2012/
herzmuskelzellen-aus-vorlaeuferzellen-hergestellt-.html

Dr. Claudia Vorbeck | Fraunhofer-Institut
Weitere Informationen:
http://www.igb.fraunhofer.de/de/kompetenzen/zellsysteme/kardiovaskulaer.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Korallenthermometer muss neu justiert werden
23.09.2016 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt
23.09.2016 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Im Focus: Mit OLED Mikrodisplays in Datenbrillen zur verbesserten Mensch-Maschine-Interaktion

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet seit Jahren an verschiedenen Entwicklungen zu OLED-Mikrodisplays, die auf organischen Halbleitern basieren. Durch die Integration einer Bildsensorfunktion direkt im Mikrodisplay, lässt sich u.a. die Augenbewegung in Datenbrillen aufnehmen und zur Steuerung von Display-Inhalten nutzen. Das verbesserte Konzept wird erstmals auf der Augmented World Expo Europe (AWE), vom 18. – 19. Oktober 2016, in Berlin, Stand B25 vorgestellt.

„Augmented Reality“ (erweiterte Realität) und „Wearable Displays“ (tragbare Displays) sind Schlagworte, denen man mittlerweile fast täglich begegnet. Beide...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einsteins Geburtsstadt wird für eine Woche Hauptstadt der Physik

23.09.2016 | Veranstaltungen

Industrie und Wissenschaft diskutieren künftigen Mobilfunk-Standard 5G auf Tagung in Kassel

23.09.2016 | Veranstaltungen

Fachgespräch Feste Biomasse diskutiert Fragen zum Thema "Qualitätshackschnitzel"

23.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Korallenthermometer muss neu justiert werden

23.09.2016 | Biowissenschaften Chemie

Doppel-Infektion macht Erreger aggressiver

23.09.2016 | Biowissenschaften Chemie

Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

23.09.2016 | Biowissenschaften Chemie