Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanospalten, molekulare Rührer und Relais

01.08.2002


Ansatzpunkte für die künstliche Photosynthese

Winzige Hohlräume in Enzymen und Rezeptoren sind der Ort, an dem biochemische Reaktionen ablaufen. Solche nur einige Millionstel Millimeter messenden "Nanospalten" lassen sich beispielsweise auch in künstlichen Membranen erzeugen und könnten für katalytische Reaktionen genutzt werden. Im Laufe ihrer Untersuchungen machte eine Berliner Forschergruppe um Jürgen-Hinrich Fuhrhop eine überraschende, bisher einmalige Beobachtung: Wasserlösliche Substanzen, die bestimmte Strukturelemente des Zuckers Glucose enthalten, werden in künstlichen Membranlücken wochenlang fest gehalten, auch wenn sie im Kontakt mit Wasser stehen, das die Substanz nicht enthält. Dem "Glucosetyp" entsprechen einige Sechs- und Fünfring-Moleküle, die alle eine hydrophile (wasserfreundliche) und eine hydrophobe (wasserabweisende) Kante ober- und unterhalb oder links und rechts von der starren Ringebene aufweisen. Mit der hydrophoben Kante lagern sie sich fest an die ebenfalls hydrophoben Wände der Membranlücke an und kleiden diese vollständig aus. Mit ihrer hydrophilen Kante binden sie Wassermoleküle. Das Besondere dabei: Diese Kante passt genau zu der hexagonalen Struktur, die Wassers in gefrorenem Zustand einnimmt. Alle Wassermoleküle in der Nanospalte werden so in der Eisstruktur fixiert. Über Wochen können weder die Glucosetyp-Moleküle, deren wirksamste Vertreter Cellobiose, Tyrosin und Ascorbinsäure sind, aus der wassergefüllten Membranlücke in das benachbarte Volumenwasser austreten, noch gelangen Salze in die Spalte hinein. "Dieses Phänomen könnte eine Rolle bei der Erkennung der Zuckermuster bestimmter Botenstoffe an Zelloberflächen spielen," vermutet Fuhrhop.

10 % Ethanol im Volumenwasser zerstören die "Eisstruktur" in der Membranlücke. Ebenso wirkt ein schmales organisches Ion (Dimethylviologen), das von einem angelegten elektrischen Potenzial in die Lücke gezogen und durch zyklische Veränderungen des Potenzials bewegt wird. Innerhalb weniger Minuten "rührt" das Molekül die Spalte frei. Auch für diese Phänomene finden sich Analoga in der Natur: Die reversible Membran-Zerstörung durch Alkohol und über den zellulären Energieträger ATP getriebene "Rührer".
Fuhrhop hofft, mit seinen Membranspalten ein künstliches Photosynthese-System entwickeln zu können. Die unbeweglichen Tyrosin- und Ascorbinsäure-Moleküle am Rand der Nanospalten bieten sich dabei als "Relais" für den Elektronentransfer - einem wichtigen Schritt bei der Photosynthese - zwischen Molekülen am Boden und am Rand der Membranlücken an. Der molekulare Rührer könnte "verbrauchte" Moleküle aus den Nanospalten hinaus befördern und so für Nachschub sorgen.


Kontakt: Prof. J.-H. Fuhrhop
FB Biologie, Chemie, Pharmazie
Institut für Chemie/Organische Chemie
Freie Universität Berlin
Takusstr. 3
D-14195 Berlin
Fax: (+49) 30-838-5589

E-Mail: fuhrhop@chemie.fu-berlin.de

Dr. Kurt Begitt | idw

Weitere Berichte zu: Kante Membranlücke Molekül Nanospalten

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beobachten, wie Chaperone defekte Proteine erkennen
25.08.2016 | Technische Universität München

nachricht Nervenzellen mit Rhythmusgefühl
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen. Molekulare Faltungshelfer, die sogenannten Chaperone, kontrollieren den Strukturierungsprozess. Ein Forscherteam unter der Beteiligung der Technischen Universität München (TUM) konnte nun herausfinden, wie Chaperone besonders gefährliche Fehler in diesem Strukturierungsprozess erkennen. Die Ergebnisse wurden im Fachmagazin "Molecular Cell" veröffentlicht.

Chaperone sind sozusagen die TÜV-Prüfer der Zelle. Es handelt sich um Proteine, die wiederum andere Proteine auf Qualitätsmängel untersuchen, bevor diese die...

Im Focus: Mikroskopieren mit einzelnen Ionen

Neuartiges Ionenmikroskop nutzt einzelne Ionen, um Abbildungen mit einer Auflösung im Nanometerbereich zu erzeugen

Wissenschaftler um Georg Jacob von der Johannes Gutenberg-Universität Mainz haben ein Ionenmikroskop entwickelt, das nur mit exakt einem Ion pro Bildpixel...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: Neues DFKI-Projekt SELFIE schlägt innovativen Weg in der Verifikation cyber-physischer Systeme ein

Vor der Markteinführung müssen neue Computersysteme auf ihre Korrektheit überprüft werden. Jedoch ist eine vollständige Verifikation aufgrund der Komplexität heutiger Rechner aus Zeitgründen oft nicht möglich. Im nun gestarteten Projekt SELFIE verfolgt der Forschungsbereich Cyber-Physical Systems des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) unter Leitung von Prof. Dr. Rolf Drechsler einen grundlegend neuen Ansatz, der es Systemen ermöglicht, sich nach der Produktion und Auslieferung selbst zu verifizieren. Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Vorhaben über drei Jahre mit einer Fördersumme von 1,4 Millionen Euro.

In den letzten Jahrzehnten wurden enorme Fortschritte in der Computertechnik erzielt. Ergebnis dieser Entwicklung sind eingebettete und cyber-physische...

Im Focus: „Künstliches Atom“ in Graphen-Schicht

Elektronen offenbaren ihre Quanteneigenschaften, wenn man sie in engen Bereichen gefangen hält. Ein Forschungsteam mit TU Wien-Beteiligung baut Elektronen-Gefängnisse in Graphen.

Wenn man Elektronen in einem engen Gefängnis einsperrt, dann benehmen sie sich ganz anders als im freien Raum. Ähnlich wie die Elektronen in einem Atom können...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Ideen für die Schifffahrt

24.08.2016 | Veranstaltungen

E-Health, E-Hygiene, IT-Management und IT-Sicherheit: Trends und Chancen für Kliniken und Praxen

24.08.2016 | Veranstaltungen

HTW Berlin richtet im September die 30. EnviroInfo aus

23.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sichere Netzwerke fürs Internet der Zukunft

25.08.2016 | Informationstechnologie

Geodätisches Referenzsystem ermöglicht hochpräzise Positionsbestimmung

25.08.2016 | Geowissenschaften

Gold aus Abfall

25.08.2016 | Materialwissenschaften