Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Resistenzen von wilden Verwandten nutzbar machen

27.11.2012
Forschern ist es gelungen, kultivierte Tomaten widerstandsfähiger gehen Schädlinge zu machen. Dafür kreuzten sie diese mit Wildtomaten, die einen für Fressfeinde giftigen Abwehrstoff produzieren. Die Forscher identifizierten den Syntheseweg dieses Stoffs, der den Pflanzen bei der Abwehr der Feinde hilft und führten die relevanten Gene in den kultivierten Tomatenpflanzen ein.

Die Pflanzenzüchtung hat bereits viel dazu beigetragen, die Qualität von Tomaten (Solanum lycopersicum) zu verbessern (z.B. das Aroma der Früchte) und deren Ernteerträge zu steigern. Ein weiteres Zuchtziel ist es, die Tomaten widerstandsfähiger zu machen. Dazu werden oft wünschenswerte Eigenschaften von wilden Verwandten eingekreuzt.

Wildtomaten sind zwar nicht so ertragreich wie die Kulturtomaten, dafür verfügen sie jedoch über eine große genetische Diversität, durch die sie besser auf schädigende Umwelteinflüsse reagieren können. Darunter auch Gene für die Abwehr von Schädlingen. Bei der Kultivierung der Tomate gingen vermutlich viele dieser ursprünglichen Wildtomaten-Gene verloren.

Verbesserung der Widerstandsfähigkeit gegenüber Schädlingen

Zu den bedeutendsten Schädlingen der kultivierten Tomaten zählen Weiße Fliegen, Spinnmilben und Blattläuse. Diese Fressfeinde durchlöchern nicht nur die Blätter und Früchte der Pflanze, sondern übertragen auch Pflanzenviren. Die Schädlinge können also große wirtschaftliche Schäden anrichten.

Wie halten sich die Wildpflanzen Schädlinge von Leibe?
Um kultivierte Tomaten resistenter gegenüber Schädlingen zu machen, statteten Forscher Tomaten der Kultursorte „Moneymaker“ mit einem natürlichen Abwehrmechanismus der Wildtomatensorte Solanum habrochaites aus.

Die Wildtomate Solanum habrochaites produziert einen für Insekten giftigen Stoff (7-Epizingiberen). 7-Epizingiberen wird chemisch den Terpenen (genauer: den Sesquiterpenen) zugeschrieben. Terpene bilden die größte Gruppe der sogenannten sekundären Pflanzenstoffe. Sie sind für die Pflanze nicht lebensnotwenig, aber sie übernehmen wichtige Funktionen, z.B. bei der Abwehr von schädlichen Insekten. Der toxische Stoff wird in den Drüsenhaaren (Trichome), die sich auf den Blättern und Stängeln der Tomatenpflanzen befinden, produziert und gespeichert. Kultivierte Tomaten können 7-Epizingiberen jedoch nicht bilden.

Nachkommen sind widerstandsfähiger
Kreuzten die Wissenschaftler „Moneymaker“ Tomaten mit Wildtomaten, produzierte deren Nachkommen (F2-Generation) den für die Insektenabwehr wichtigen Stoff 7-Epizingiberen.

Die Forscher testeten daraufhin, ob die so entstandenen Pflanzen sich gegen Schädlinge besser zur Wehr setzen können. Sie setzten dazu Tabakmottenschildläuse (oder Tabak-Weiße Fliegen, Bemisia tabaci) auf den Pflanzen aus und stellten fest, dass bereits bei geringeren 7-Epizingiberen-Konzentrationen als in der Wildtomate, nach fünf Tagen bis zu 70 Prozent der Schädlinge gestorben waren. Diese Ergebnisse zeigen, dass auch geringere Konzentrationen an 7-Epizingiberen die Pflanzen gegen ihre Feinde widerstandsfähiger machten. Auch die Anzahl der abgelegten Eier reduzierte sich um bis zu 74 Prozent.

Wie wird 7-Epizingiberen produziert?

Da 7-Epizingiberen nur in den Wildtomaten gebildet wurde und nicht in den kultivierten, interessierte die Forscher, wo und wie der Stoff genau gebildet wird. Die Forscher identifizierten den Biosyntheseweg – d.h. den Aufbauprozess dieses komplexen Stoffes – und stellten fest, dass 7-Epizingiberen in den Plastiden der Drüsenhaare produziert wird.

Die Analyse des Biosynthesewegs zeigte, dass eine ganz neue Enzymklasse am Aufbau von 7-Epizingiberen beteiligt ist. Darunter ein Enzym (Synthase), das die Bildung von 7-Epizingiberen beschleunigt. Die Nachkommen im Experiment erbten also von den Wildtomaten die Gene, die diese spezielle Synthase bilden und konnten daraufhin 7-Epizingiberen produzieren. Das Gen war demnach im Erbgut der kultivierten Tomaten nicht mehr enthalten, wodurch die Tomaten diese Abwehrstoffe nicht mehr bilden konnten.

Pflanzen schützen sich selbst

Weiß man wie und wo Abwehrstoffe in Wildtomaten gebildet werden, ließen sich diese Abwehrmechanismen gezielt in kultivierten Tomatensorten einführen. Das genetische Potential der Wildtomate könnte demnach helfen, ertragreiche und widerstandsfähigere Kultursorten zu züchten, die sich mit geringerem Insektizideinsatz kultivieren ließen.
Quelle:
Bleeker, P. M. et al. (2012): Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. In: PNAS, 19. November 2012, doi: 10.1073/pnas.1208756109.

Bleeker, P. M. et al | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/resistenzen-von-wilden-verwandten-nutzbar-machen?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Sturmwarnung: 150 Jahre Schäden im Schweizer Wald
21.09.2016 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

nachricht Das Rätsel der Monodominanz - Wie im Regenwald natürliche Monokulturen entstehen
06.09.2016 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: Zielsichere Roboter im Mikromaßstab

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für...

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart Glasses Experience Day

30.09.2016 | Veranstaltungen

Einzug von Industrie 4.0 und Digitalisierung im Südwesten - Innovationstag der SmartFactoryKL

30.09.2016 | Veranstaltungen

"Physics of Cancer" - Forscher diskutieren über biomechanische Eigenschaften von Krebszellen

30.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Smart Glasses Experience Day

30.09.2016 | Veranstaltungsnachrichten

Materialkompetenz für den Leichtbau: Fraunhofer IMWS präsentiert neue Lösungen auf der K-Messe

30.09.2016 | Messenachrichten

Vom Rollstuhl auf das Liegerad – Mit Funktioneller Elektrostimulation zum Cybathlon

30.09.2016 | Energie und Elektrotechnik